

VerilogA Code Standards Version 1.3.0 2024-June-14

- 1 -

CMC Policy on Standardization of Verilog-A Model Code

For compact models accepted as standards by the Compact Model Coalition (CMC), CMC policy states
that the Verilog-A description of the model defines the standard. Any compliant implementation of the
standard model shall give the same outputs (terminal currents, noises, and operating-point information)
as the standard Verilog-A code, when provided with the same standard parameters (names and values)
and applied biases. Simulator vendors may add additional parameters and provide additional operating-
point information to implementations in their tools at their discretion.

This document describes the aspects of the standard that are determined by the Verilog-A code. A set of
CMC macros is provided as an appendix of this document.

General Principles:
QA testing
A guiding principle for this document is to ensure that the CMC QA tests can be easily run with either
the Verilog-A code as delivered or with the built-in model. This provides the end-user with the ability to
verify that a particular implementation of a model is compliant with the standard. In some scenarios,
switching from Verilog-A to the built-in model is as easy as removing the “verilogaFile” option in the test
setup file (usually named “qaSpec”). One might also have to change the model name set by
nTypeSelectionArguments (or pTypeSelectionArguments); however, there should be no need to change
terminal names or parameter names.

Additionally, users may want to run a simulation in which an existing built-in model is replaced by a
Verilog-A description of a new release (such as beta code).

Syntax
Verilog-A is the analog subset of the Accellera standard Verilog-AMS, defined at present by the
Language Reference Manual (LRM) version 2.4.1 All references to Verilog-A or Verilog-AMS in this
document refer to this version of the LRM, which can be downloaded from
https://accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf . Verilog-AMS is case-
sensitive and uses ASCII characters (not Unicode), and thus Verilog-A modules must conform to these
conventions. Module names, parameter names, and variable names are called “identifiers” in Verilog-
AMS, and the syntax for a simple identifier is expressed (in Backus-Naur form) as

 simple_identifier2 ::= [a-zA-Z_] { [a-zA-Z0-9_$] }

1 Accellera is presently working on integrating analog and mixed-signal extensions into IEEE Standard 1800 System
Verilog.
2 From Annex A.9.3 of VAMS LRM 2.4.

https://accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf

VerilogA Code Standards Version 1.3.0 2024-June-14

- 2 -

This syntax means that a simple identifier must start with a letter between ‘a’ and ‘z’ or ‘A’ and ‘Z’ or an
underscore, and then is followed by any sequence of letters, numbers, underscores, and dollar signs ($).

For the purposes of this document, an additional syntax is defined, which restricts the letters to
lowercase. The syntax for such identifiers is

 interface_identifier ::= [a-z] { [a-z0-9_] }

If a module uses lowercase letters for interactions from the “outside” (namely, the simulator), these
modules will match the conventions found in case-sensitive simulators. Note that the parameters listed
in Annex E of the LRM, SPICE compatibility, are all lowercase. Specific requirements of the following
section shall determine the restrictions of the identifiers used for the module name, parameter names,
operating-point names, and noise names. By restricting these to only lowercase names, there is no
possibility of two identifiers (such as a parameter and an operating-point variable) having the same
name, which could cause confusion in case-insensitive simulators.

Any variables that are strictly internal to the module may use uppercase or mixed-case names; use of
the dollar sign ($) is discouraged.

Specific Requirements:
1. Module name

The module name shall be derived from the name of the model. The module name shall be an interface
identifier, as defined above. Models that were developed by the CMC, or for which the CMC owns the
copyright, shall have module names ending with “_cmc”. Models developed by other groups shall
append “_va” to the model name.

Examples:

 module r2_cmc(n1,n2);

 module hisimhv_va(d, g, s, b, sub, temp);

2. File name
The name of the primary file (i.e., the file that contains the module name) shall be constructed by
appending “.va” to the model name, in lowercase. Additional files may be included from the primary file.

3. Terminal names
Terminals shall be named with lowercase letters. Although the terminal names are not important in
many Spice-like implementations, where terminal connections are made by ordered list rather than by
name, the names are important when reporting terminal currents or operating-point information such
as capacitances. For models that correspond to SPICE primitives, terminals (referred to as “ports” in
Verilog-AMS) shall use the names found in Table E-1 of Annex E of the Verilog-AMS LRM. (These names
are all lowercase.)

VerilogA Code Standards Version 1.3.0 2024-June-14

- 3 -

Examples:

 module hicum_va(c, b, e, s);

 module hisimhv_va(d, g, s, b, sub, temp);

4. Parameters
Parameters shall be named with interface identifiers as defined above. They shall be declared using the
CMC macros (MPRcz, MPRnb, etc.). Appropriate units, ranges, and descriptions should be supplied.
Specifically, any parameter that cannot physically be negative shall have a range that excludes negative
values. Recommended macros for parameter declarations are provided as an appendix of this
document.

Examples:

 ‘MPRoz(tox, 3n, "m", "oxide thickness");

 ‘MPRcz(rd, 0.0, "Ohm", "drain resistance");

For those model developers that want some indication of which identifiers (names of variables or
parameters) correspond to parameters, a simple macro may be helpful:

 `define PAR(x) x

Equations in the module can then be written using the macro

 Cgd = `PAR(cgdo) * weff;

where Cgd and weff are variables and cgdo is a parameter.

5. Operating-point values
Operating point values shall be declared using the CMC macros (OPP, OPM, OPD) with appropriate units
and descriptions. The names of operating-point variables shall be interface identifiers.

In order that QA test results match between the Verilog-A and built-in, and so that simulations replacing
the built-in with newer Verilog-A should give the same results, the values of operating point values are
part of the standard. These values are also available for access via the CMC Open Model Interface (OMI),
and the values must be consistent across simulators. If a value in a simulator’s built-in implementation
differs by a minus sign from the Verilog-A, that implementation is not compliant with the standard.

Examples:

 `OPP(vsat, "V", "saturation voltage")

 `OPM(iavl, "A", "avalanche current")

 `OPD(reff, "Ohm", "effective resistance")

VerilogA Code Standards Version 1.3.0 2024-June-14

- 4 -

6. Noise source names
All noise sources shall be given a name by providing the optional last argument to the white_noise
and flicker_noise functions in Verilog-A. The name shall be an interface identifier unique to the
physical source. Since the Verilog-A LRM requires that noise from all sources with the same name be
combined, it is better to name “rd” and “rs” for source and drain resistance, rather than lumping all
resistor noise together by naming them all “thermal.”

Examples:

 I(d,di) <+ white_noise(fourkt*gd,"rd");

 I(s,si) <+ white_noise(fourkt*gs,"rs");

However, if there are two (or more) contributions for the same physical noise, e.g. different
flicker_noise calls based on a parameter like noimod, then these names should be the same. (Do
not use names like “flicker_noimod1” and “flicker_noimod2.”)

Example:

 if (noimod == 1 || noimod == 4) begin

 I(di,si) <+ flicker_noise(kf * pow(idc,af), ef, "flk");

 else if (noimod == 13) begin

 I(di,si) <+ flicker_noise(kf * gm *gm / CoxWL, af, "flk");

 end

Note in this example the frequency exponent differs in the two cases.

7. Reference temperature
If the model requires a reference temperature to indicate the temperature at which the specified
parameters are valid, the module shall declare a parameter named tref or tnom.

Example:

`MPRco(tref, 27.0, "degC", -273.15, inf, "Reference temperature")

This parameter should never be obtained from the simulator, which would prevent accurate simulations
of models that require different values of tref.

8. Temperature offset
The module shall provide a parameter to specify the temperature offset of the device ambient
temperature (excluding self-heating) from the circuit ambient temperature. This parameter shall be
named dtemp, and trise shall be provided as an alias (using the Verilog-A feature aliasparam).

VerilogA Code Standards Version 1.3.0 2024-June-14

- 5 -

Example:

`IPRnb(dtemp, 0.0, "K", "Device temperature offset")

aliasparam trise = dtemp;

Having a consistent name for a temperature offset for all instances simplifies the process of specifying
such an offset for a circuit or portion thereof, such as might be done for electrothermal simulation.

9. Gmin
Model developers have responsibility for inserting gmin currents and should follow the
recommendations of the CMC gmin subcommittee. The value of gmin shall be obtained by calling the
simulation parameter function

 $simparam("gmin", 0.0)

Note that the default value is 0.0, to avoid adding artificial leakage in a simulator that does not use or
require gmin.

10. Scaling
For certain processes (generally, fine-line CMOS processes), the layout is scaled or shrunk optically to
take up less area in silicon. Often, this scaling can be applied directly to the shapes in an existing layout,
without involvement of the layout engineer or circuit designer. If a layout is scaled to 90%, then linear
dimensions in the layout, such as length, would be scaled by 0.9, but areas would be scaled by the
square of this factor, or 0.81.

While it is generally obvious what scaling rules should be applied to common parameters such as length
(l) and width (w), there are many additional parameters for layout-dependent effects; additionally, some
dimensions, such as fin heights, are not affected by the scaling. Therefore, the scaling rules for a model
shall be implemented in the Verilog-A code by using one of the two scaling macros defined in the
appendix, `LS and `QS, to specify the scaling; the actual scaling operations shall be done by the
simulator. Note this scaling only applies to instance parameters, which are determined by the layout;
model parameters are not scaled, as the model parameters are assumed to be extracted from wafers of
the scaled process. (For parameters that are both model and instance, the scaling shall only be applied
to parameters specified on the instance line.)

With this macro:

`define LS , scale="linear"

the parameter declaration:

`IPRcz(length, 1.0u, "m" `LS, "length")

(where IPRcz is defined in the appendix) would expand into this:

(* units = "m" , scale="linear", desc="length" *)
 parameter real length = 1.0u from [0.0 : inf);

VerilogA Code Standards Version 1.3.0 2024-June-14

- 6 -

Note the comma is part of the definitions of the macros `LS and `QS, and there is no comma between
the units and scaling macro. This way, we do not need to redefine all the parameter macros to accept an
additional argument.

Since the Verilog-A code defines the model standard, if the Verilog-A code does not implement scaling
rules, then the standard does not include scaling; a simulator that is compliant with the standard shall
not perform any scaling.

11. Warning and error messages
Warning messages shall be reported using $warning. The %m specifier can be used to identify the
instance that is generating the warning.

 $warning("Warning (%m): message");

Error messages shall be reported using $error. This function (technically, a “system task”) gives more
explicit instruction to the simulator. Historically, models have use the $finish task:

 $strobe("ERROR: message");
 $finish(0);

However, $finish in some contexts simply means the analysis is done (e.g., enough cycles have been
run or a conversion has finished), without implying any sort of error condition. The two lines above shall
be replaced with one:

 $error("ERROR: message");

The $error task is preferred to $fatal, because simulators should print all error messages if more
than error condition is in effect, whereas simulators may abort after the first $fatal message.

12. Physical constants
Models should define their own physical constants, to ensure the same values are used for the model as
implemented in different simulators or parameter extraction tools. In order that CMC standard models
for different devices in the same manufacturing process are consistent, the values of the elementary
charge (e) and Boltzmann constant (k) should use the exact values defined for the International System
of Units (SI), namely:

Elementary charge 1.602176634e-19
Boltzmann constant 1.380649e-23

The SI units were redefined in 2019 to make these values exact. These values are also listed in the
CODATA 2018 and CODATA 2022 internationally recommended values; see
https://physics.nist.gov/cuu/Constants/index.html

The Verilog-AMS 2023 Language Reference Manual (LRM) defines macros for these values
(P_Q_NIST2018 and P_K_NIST2018), which will become available in simulators that support the
new LRM.

VerilogA Code Standards Version 1.3.0 2024-June-14

- 7 -

Implementation timeline:
All new models should be reviewed for compliance with these guidelines before acceptance as a
standard. Existing standard models should endeavor to adopt these guidelines in subsequent releases,
but they are not required to release new code simply to implement the recommendations. Any changes
that break backwards-compatibility should be postponed until the release of a new version, following
the version numbering policy in the “CMC Compact Model Release Specification” policy document.

VerilogA Code Standards Version 1.3.0 2024-June-14

- 8 -

Appendix: Recommended macros for CMC compact models

// Macros for the model/instance parameters
//
// MPRxx model parameter real
// MPIxx model parameter integer
// IPRxx instance parameter real
// IPIxx instance parameter integer
// BPRxx both (model and instance) parameter real
// ||
// cc closed lower bound, closed upper bound
// oo open lower bound, open upper bound
// co closed lower bound, open upper bound
// oc open lower bound, closed upper bound
// cz closed lower bound = 0, open upper bound = inf
// oz open lower bound = 0, open upper bound = inf
// nb no bounds
// ex no bounds with exclude
// sw switch (integer only, values 0 = false and 1 = true)
// ty switch (integer only, values -1 = p-type and +1 = n-type)
//
// LS linear scaling for instance parameters
// QS quadratic scaling for instance parameters
//
// OPP operating point parameter, includes units and description for printing
// OPM operating point parameter, multiply value by $mfactor (eg: currents, charges)
// OPD operating point parameter, divide value by $mfactor (eg: resistances)

`define MPRnb(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter real nam = def;
`define MPRex(nam, def, uni, exc, des) (* units = uni, desc = des *) \
 parameter real nam = def exclude exc;
`define MPRcc(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter real nam = def from[lwr : upr];
`define MPRoo(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter real nam = def from(lwr : upr);
`define MPRco(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter real nam = def from[lwr : upr);
`define MPRoc(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter real nam = def from(lwr : upr];
`define MPRcz(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter real nam = def from[0.0 : inf);
`define MPRoz(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter real nam = def from(0.0 : inf);

`define MPInb(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter integer nam = def;
`define MPIex(nam, def, uni, exc, des) (* units = uni, desc = des *) \
 parameter integer nam = def exclude exc;
`define MPIcc(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter integer nam = def from[lwr : upr];
`define MPIoo(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter integer nam = def from(lwr : upr);
`define MPIco(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter integer nam = def from[lwr : upr);
`define MPIoc(nam, def, uni, lwr, upr, des) (* units = uni, desc = des *) \
 parameter integer nam = def from(lwr : upr];
`define MPIcz(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter integer nam = def from[0 : inf);
`define MPIoz(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter integer nam = def from(0 : inf);
`define MPIsw(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter integer nam = def from[0 : 1];
`define MPIty(nam, def, uni, des) (* units = uni, desc = des *) \
 parameter integer nam = def from[-1: 1] exclude 0;

VerilogA Code Standards Version 1.3.0 2024-June-14

- 9 -

`define IPRnb(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def;
`define IPRex(nam, def, uni, exc, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def exclude exc;
`define IPRcc(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def from[lwr : upr];
`define IPRoo(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def from(lwr : upr);
`define IPRco(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def from[lwr : upr);
`define IPRoc(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def from(lwr : upr];
`define IPRcz(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def from[0.0 : inf);
`define IPRoz(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) \
 parameter real nam = def from(0.0 : inf);

`define IPInb(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def;
`define IPIex(nam, def, uni, exc, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def exclude exc;
`define IPIcc(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def from[lwr : upr];
`define IPIoo(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def from(lwr : upr);
`define IPIco(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def from[lwr : upr);
`define IPIoc(nam, def, uni, lwr, upr, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def from(lwr : upr];
`define IPIcz(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def from[0 : inf);
`define IPIoz(nam, def, uni, des) (* units = uni, type = "instance", desc = des *) \
 parameter integer nam = def from(0 : inf);

`define BPRnb(nam, def, uni, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def;
`define BPRex(nam, def, uni, exc, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def exclude exc;
`define BPRcc(nam, def, uni, lwr, upr, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def from[lwr : upr];
`define BPRoo(nam, def, uni, lwr, upr, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def from(lwr : upr);
`define BPRco(nam, def, uni, lwr, upr, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def from[lwr : upr);
`define BPRoc(nam, def, uni, lwr, upr, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def from(lwr : upr];
`define BPRcz(nam, def, uni, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def from[0.0 : inf);
`define BPRoz(nam, def, uni, des) (* units = uni, type = "both", desc = des *) \
 parameter real nam = def from(0.0 : inf);

`define LS , scale="linear"
`define QS , scale="quadratic"

`define OPP(nam, uni, des) (* units = uni, desc = des *) real nam;
`define OPM(nam, uni, des) (* units = uni, multiplicity="multiply", desc = des *) real nam;
`define OPD(nam, uni, des) (* units = uni, multiplicity="divide", desc = des *) real nam;

VerilogA Code Standards Version 1.3.0 2024-June-14

- 10 -

Appendix: Revision History

Changes from 1.2.1 to 1.3.0 (2024-June-14): Add section on physical constants.

Changes from 1.2 to 1.2.1 (2023-Mar-20): Replace OPP by OPM for iavl example; remove hyphens from
“lower-case.”

Changes from 1.1 to 1.2 (2022-Dec-9): Add scaling section and macros, add BPRxx macros.

Changes from 1.0 to 1.1 (2020-July-27): Section 8 Temperature offset, example changed from
`MPR(dtemp, …) to `IPR(dtemp, …)

Initial version 1.0 (2019-Dec-12).

	OLE_LINK9
	OLE_LINK10
	OLE_LINK8
	OLE_LINK11
	OLE_LINK4
	OLE_LINK7
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK5
	OLE_LINK6

