

A Collaborative Data Model for AI/ML in EDA
August 19, 2020

Kerim Kalafala, IBM
Veeravanallur Parthasarathy, AMD
Norman Chang, ANSYS
Akhilesh Kumar, ANSYS
Elias Fallon, Cadence Design Systems
Sriram Madhavan, GLOBALFOUNDRIES
Prateek Bhansali, Intel Corporation
Srinivas Bodapati, Intel Corporation

Chandramouli Kashyap, Intel Corporation
James Masters, Intel Corporation
Ramy Iskander, Intento Design
Larg Weiland, PDF Solutions
Karthik Aadithya, Sandia National Laboratory
Boon-Siang Cheah, Synopsys
Mengdi He, Synopsys
Leigh Anne Clevenger, Si2

Published by
Silicon Integration Initiative, Inc. (Si2™)
12335 Hymeadow Dr, Suite 450
Austin, TX 78750

This document is subject to protection under Copyright Laws:
Copyright © 2020 Si2. All Rights Reserved Worldwide.

Requests for copyrighted material usage should be made to Leigh Anne Clevenger,
leighanne.clevenger@si2.org.

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 2

A Collaborative Data Model for AI/ML in EDA

Abstract—A standard, common method for classification and
structure of machine learning training and inference data for
interoperability is critical to enable and accelerate the use of
artificial intelligence and machine learning in semiconductor
electronic design automation. Subject matter experts from across
the semiconductor and EDA industry highlight the differences and
common threads in developing industry standards for AI/ML in
EDA application data for design areas including digital, analog,
shapes-based and IP development. The authors conclude that in
order to accelerate AI/ML applications for EDA, a collaborative
and coordinated approach is needed. A prerequisite for this
approach is establishing the best process for organizing,
leveraging and sharing data. Si2 industry survey results show a
gap in the availability and organization for AI/ML data in EDA.
A common data model would address the data organization gap
for chip developers, EDA tool developers, IP providers and
researchers by first supporting the high interest EDA areas, design
data and derived data.

Keywords— artificial intelligence, classification, EDA, machine
learning, standards

I. INTRODUCTION
What is needed to enable and accelerate the use of artificial

intelligence and machine learning in electronic design
automation? Subject matter experts from across the
semiconductor and EDA industries describe in this work that a
standard, common method for classification and structure of
ML training and inference data for EDA interoperability is
critical. Their views on design areas including digital, analog,
shapes-based and IP development highlight the differences and
common threads in developing industry standards for AI/ML in
EDA application data.

In the following sections, this work provides background
and motivation for machine learning and IC design, describes
EDA design data for ML, defines derived data, discusses IP
protection for ML data, presents modes of inferencing models,
discusses use case applications for a common data model, and
draws conclusions on AI/ML in EDA data model opportunities.

II. BACKGROUND AND MOTIVATION

Integrated Circuit (IC) design is a complex process, during
which billions of nanoscale transistor devices are fabricated on
a silicon die and connected via intricate metal layers. The final
product is an IC which powers much of our life today.

Given the intricacy of modern-day ICs, as shown in Fig. 1,
Electronic Design Automation (EDA) plays a critical role in the
design process. Even in the presence of EDA tools, however, a
single IC can take months or years to design. Accelerating this
timeline would reduce cost and time to market, benefitting all
industry stakeholders. Machine Learning (ML) and Artificial
Intelligence (AI) may be the solution. Important to the

motivation of this study are Machine Learning and IC Design,
the Demand for Data, and the Structure of the Data Model.

A. Machine Learning and IC Design
Before going further, it is important to understand the kinds

of problems ML is intended to solve. AI/ML is best suited for
applications where a great deal of data exists for training and
evaluation, patterns for leveraging past experiences are
common, and the problem either cannot be solved
deterministically using physical principles or is exponentially
complex. The first criterion is easily satisfied for many
problems in IC design. Data from EDA tools is plentiful in the
forms of placement, routing, netlists, characterized libraries,
simulation outputs, masks, layout and extraction files. One can
leverage this data, and the patterns embedded within, to
generate new data using ML [1]. For example, the topology of
the design, hierarchy in the design, the symmetry in layouts,
repeating patterns in waveforms, etc. The second criterion is
also satisfied for many problems in EDA design. While some
issues can be mathematically solved using physical
principles—such as circuit simulation, which combines device
physics equations with numerical techniques to solve
Differential Algebraic Equations (DAEs)—there are many
applications in which NP-hard problems abound and heuristics
are used to solve them. Examples of the latter include finding
the optimal routing in a design given an initial placement of
logic gates or transistors [2], [3], determining the optimal
setting of parameters for logic and physical synthesis, analog
circuit optimization and transistor sizing [4], etc. ML can also
be applied to the compute infrastructure and scheduling for
solving CAD problems, such as identifying the correct memory
[5] and core configuration of machine to launch a CAD job in
the cloud.

Fig. 1. Example of a high-level IC design flow.

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 3

While there is ample scope for application of AI/ML to
EDA, current efforts have been scattered across academia,
research labs, and industry. To accelerate AI/ML applications
to EDA, a collaborative and coordinated approach is needed. A
prerequisite for this approach is establishing the best process
for organizing, leveraging and sharing data, since such data are
the foundation on which AI/ML applications are built. This
paper proposes a data model to facilitate this interaction. The
data model must satisfy the needs of the various persons who
will be interacting with it, including CAD engineers (both EDA
companies and CAD groups within design houses), design
engineers, researchers, and academics. For example, a
researcher would use the data model to develop an optimal ML
algorithm, whereas a design engineer may test the performance
of an ML algorithm on the data model, and a CAD engineer
may want to create a product that encapsulates various ML
algorithms and use the data model to benchmark and qualify.
The data model must support each of these use cases.

B. Demand for Data
EDA and semiconductor stakeholders completed an

industry-wide Si2 survey from April 15-May 15, 2020. Two
hundred respondents shared their success, areas of interest, and
roadblocks in AI/ML for EDA. The goal of the Special Interest
Group is to use this information to drive industry and research
direction, filling the development, standards and interoperability
gaps to enable greater adoption of AI/ML in EDA. The survey
respondents highlighted three areas for an AI/ML in EDA
methodology flow: design and derived data, data organization,
and a reference flow with associated Application Programming
Interface (API). This section focuses on the interdependence of
requirements for design data, derived data, and data organization
for AI/ML in EDA training and inference.

Reviewing all the responses for the importance of training
data, availability and a common data model is not unlike
analyzing the effectiveness of online training videos and the
value of search engines. From the millions of videos online, a
user wants the top responses to given search criteria. Finding the
video is what users want. They do not want to know the details
of the search engine. In the same way, survey respondents put
training data availability at a higher importance than a common
data model (Fig. 2), but the quality of the data model will
determine how useful the data returned by the model will be.
Viewed together, ML training data availability and a common
data model are valuable for AI/ML in EDA adoption.

Survey questions also addressed concerns about the lack of
training data and a common data model. This is an established
survey technique to check the consistency of results by asking
the negative of a previous question. Interestingly, a different set
of respondents expressed concerns about lack of training data,
but the results for lack of a common data model were consistent
(Fig. 2)

Respondents indicated the areas in which they are testing
AI/ML Methods. There was a wide range of interest, but over
25% of respondents indicated simulation, place and route,
compute efficiency (performance), and verification and debug
were priorities (Fig. 3). These would be the areas most
compelling to users for the first implementation of a common
data model.

Respondents were asked to identify the types of design data
they are using or would use for ML training and inference. Their
answers provide a starting point for the forms of design data and
derived data to be supported by a common data model. Data
relating to simulation, layout, place and route, timing, power,
verification, design rules, and standard cells were important to
over 25% of respondents (Fig. 3).

Fig. 2. Importance of training data availability and a common data model

Fig. 3. Concern about lack of training data availability and a common data

model by area

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 4

 From these industry survey results, there is a gap in the
availability and organization for AI/ML data in EDA. A
common data model would address the data organization gap for
chip developers, EDA tool developers, IP providers and
researchers by first supporting the high interest EDA areas,
design data and derived data. Without such a data model, the
industry faces:

• Lower design productivity

• Lesser design quality

• Poorer design insight

• Increased design fabrication respins

• Higher costs overall

• Reduced market competitiveness

• More difficult reuse, migration and modification
processes

• No capitalization on expertise

• No design resources improvement, including analog
experts and EDA tools

We look at the requirements of the data model next.

C. Structure of the Data Model
A data model must be able to represent the design at various

abstraction levels, from architecture to layout level. An ideal
data model for EDA applications is organized around the
following components.

1) Objects: These are design objects such as registers (RTL
phase), gates (digital design), devices (analog design),
polygons (floor planning, placement, layout), etc. Each object
must have appropriate attributes which describe the object
being considered. For instance, attributes for transistors could
be the device type, the dimensions, the number of fins, etc.,
while the attributes for layout objects may be the layer, the
color, the dimensions, and so on.

2) Composability and inheritance: The objects may be
composed of other objects—for example, an ALU will be made
of gates. Similarly, inheritance must be supported using “is-a”
relationship (i.e., a transistor is a device, as is a capacitor).

3) Relationships: The different objects in a design are
related to each other, either through a physical or an abstract
notion of connectivity. Examples of the former include the
interconnect between gates and transistors, and the wiring
between polygons. An abstract relationship could represent the
transactions between two architectural objects. A relationship
may also describe special kinds of objects, each with their own
attributes.

4) Operations: We may wish to perform an operation on
objects and relationships, such as computing the timing of an
arc on a gate object. Similarly, we may wish to propagate
waveforms through relationships. A related concept is storing
the results of an operation on the objects and relationships.

5) Design versus derived data: Whereas the “objects”
described above represent design data such as registers,
devices, wires, and shapes, “derived” data represents simulation
results calculated with respect to design data. Examples of
“derived” data include results of noise, power, logical
verification analysis, and static timing analysis. One way to
distinguish design from derived data is that design data
represents the physical implementation which will be
manufactured as an integrated circuit (this includes higher level
representations such as a “netlist,” which is composed of a set
of circuits and wires, each of which is then represented as a set
of shapes). On the other hand, derived data represents the
analysis that determines whether a given implementation will
meet all of its design requirements.

6) APIs: We need to provide APIs to get object attributes,
define custom attributes, perform computations, get results etc.
Such an API layer should ideally be compatible with existing
big-data and machine learning frameworks such as
TensorFlow, Pandas, etc.

7) Obfuscation: For IP-sensitive attributes on objects and
results of computations, a layer must be provided to hide the
true values within the data model and fetch the modified ones
for the user. This layer needs to work with the API layer defined
above. Applications could include obfuscation of the device-
related attributes or the true delays of a timing arc.

8) Revision History: A data model must not only represent
all design data but also be able to access the data of intermittent
design stages. Therefore, the API needs to interact with various
revision control systems used in EDA. There should be a
standard header on every data set. Since AI/ML is itself an
interactive process, it is beneficial to also track the model
creation process and all related data to enable data analytics like
benchmarking and quality metric monitoring over time.

III. DESIGN DATA

Design data for analog and digital design can be a fundamental
part of an AI/ML training and inference dataset. Described here
are the relationships between circuit design data generated by
EDA tools and the potential new uses of this data for AI/ML
training and inference for improved design and performance.
These include a unified data model, data model classes, and a
definition of a data model for analog circuits.

A. Unified Data Model: Digital Example
Physical design of digital ICs is a highly iterative process.

Between each iteration, questions are often asked, and analysis
performed to determine what happened, why it happened, and
how to improve the design [6]. Therefore, we need a system
which allows us to answer questions at the intersection of logic,
placement, wiring, timing, power, and noise, among other
variables. Designers also cannot be restricted to asking
questions during the implementation flow, meaning a tool-
agnostic data model to query data offline through an efficient
API layer is sorely needed.

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 5

As shown in Fig. 4, existing models such as Si2
OpenAccess are well suited for representing design data. What
is still needed, however, is an agreed-upon standard for efficient
storage of derived data such as timing, noise, power in an
offline data model, as well as a means to link derived data back
to the design data objects. This superset of design data and
derived data, all tightly coupled and linked, gives rise to a
unified persistent data model enabling AI/ML in EDA.

As illustrated in Fig. 5, such a tightly coupled data model
requires that derived data such as timing, power, and noise are
treated as first class citizens (as opposed to generic properties
annotated on an underlying design data representation).

Furthermore, to enable tool/flow correlation, we need the
ability to extract both design and derived data (denoted “DD”
in Fig. 6) at multiple points in the implementation flow. This
approach requires a highly compact unified data model
including both design and derived data, which can be written
quickly with minimal overhead to the implementation flow.

Fig. 4. High-level representation of a Unified Persistent Data Model for

enabling AI/ML in EDA.1

Fig. 5. Derived data such as timing as a first class citizen of a Unified

Persistent Data Model.1

Fig. 6. Extracting design and derived data from multiple points along the

implementation flow (courtesy Nathaniel Hieter, IBM).

In addition to the iterative nature of digital design closure,
physical synthesis, place and route, etc. tools typically contain
hundreds of options which control various behaviors.
Therefore, to interrogate data effectively, it is important for a
common data model to represent the various tool parameters that
were used to arrive at a particular design point. For example, in
the space of ML applied to EDA, one may be interested in
building an inferencing engine to predict an optimal set of tool
parameters based on various input features (e.g., number of logic
elements, target frequency and power, available area, etc.). To
train such an inferencing engine, a large amount of labeled data
would likely be required, where the labels include various tool
settings [7].

Modern digital design also involves closing to requirements
across a varied process, voltage, temperature space. Many
techniques have been developed over the years to efficiently
analyze design data across process-voltage-temperature (PVT)
points, including statistical timing (SSTA) and multi-mode-
multi-corner (MMMC) analysis. It is therefore an important
feature of a common data model to be able to represent analysis
of design data across multiple PVT combinations. Such a
representation will aid in the development of ML applications in
EDA including engines which may perform inferencing of
design characteristics across PVT space based upon a select
number of discrete measurements (reducing the need for full
simulation in all PVT corners, replacing this with inferencing
engines capable of predicting performance at non-simulated
corners) [8].

B. Data Model Classes: Analog Example
Analog design comprises two distinct phases: pre-layout and

post-layout, with layout/extraction separating them as shown in
Fig. 7. Each phase involves certain steps which perform analysis
and transformations on the underlying analog block and
generates a lot of data. Although shown sequential, in practice a
lot of iteration happens between difference phases.

Fig. 7. Typical Analog Design Cycle: Process-Voltage-Temperature (PVT),

Electrical Rule Check (ERC), Electro-Static Discharge (ESD), Layout
Versus Schematic (LVS)

To capture design data from the various stages of a typical
analog design cycle, we propose to construct a data model with
the following components. Each class specified below should
have a well-defined API to perform data queries,
manipulations, and transformations.

1) Hypergraph class to represent analog circuits: In the
hypergraph class, circuit connection points are represented via
nodes, and devices that make up circuits are represented via

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 6

hyperedges, or ordered sequences of nodes. This method is
general enough to capture any analog circuit topology. Fig. 8
shows an example.

2) Hyperedge class: The hyperedge class can be used for
devices and interconnections between devices; whenever two
devices share a connection point, their respective hyperedges
will share a node. When hyperedges are used for storing
devices, contextual attributes like associated branch currents,
reliability characteristics, number of fins, geometrical location
in placement/layout, and contact resistances can be added.
When hyperedges are used for storing interconnection between
devices, they can capture the number of pins, routing layer, pin
locations, etc.

3) Node class: The hypergraph node class is used to capture
simulation data such as voltage waveforms represented by time-
value pairs and initial conditions used to carry out circuit
simulations.

4) Device macromodel class: This class captures the
electrical behavior of analog devices such as resistors,
capacitors, diodes, and transistors. In analog circuit design, it is
vitally important to model both the DC and transient behavior
of such devices. Typical device model formulations use
“current” functions as well as “charge” functions for modelling
such behaviors. These functions can be modelled using
constructs such as Directed Acyclic Graphs, or Sequence Of
Computation-type data structures. For reference, APIs
representing devices and their core functions can be found in
academia and industry; for example, the ModSpec API used in
the MAPP platform developed at UC Berkeley, the Spyce and
Xyce device APIs developed at Sandia National Labs, and the
language constructs used in Verilog A.

Fig. 8. An example of a hypergraph class representing analog circuits

5) Circuit macromodel class: This class allows modeling,
storage, and querying of analog circuit functionality. That is,
given input conditions (PVT corners, load conditions, input
waveforms, analysis type, etc.), one can obtain the circuit’s
outputs (output waveforms or designated scalar measurements
such as power drawn) by issuing appropriate queries to
instances of this macromodel class.

6) Computational resource class: This class facilitates the
prediction of computational resources required for process
steps such as simulation, extraction, placement, and routing.
APIs for this class should allow capturing circuit characteristics

such as device count, type of elements, the “complexity” of the
underlying device, circuit, and sub-circuit macromodels, circuit
simulation conditions and parameters (for example, the
minimum time-step for transient simulation or the number of
harmonics for Harmonic Balance simulation), metal layers (for
routing), track information (for routing), area constraints (for
placement), etc., all of which will be used to predict the
computational resources (runtime and memory) required for
circuit analyses and simulations.

7) Continuous waveform class: Analog circuits and
simulations predominantly feature continuous waveforms;
these waveforms can be time-domain or frequency-domain,
real-valued or complex-valued, and scalar-valued or vector-
valued. We need a class to represent these waveforms, and also
to intelligently query such waveforms using on-the-fly
transformations such as smoothing, interpolation, and
extrapolation. Such queries should support both normal
lookups (what is the waveform value at t=1ns?) and inverse
lookups (at what time does the waveform cross 1V?).

8) Classes for statistical data and distributions: As
mentioned above, manufacturing variability is a key factor in
analog circuit design. We believe a comprehensive data model
should include features to represent statistical variables and
quantities associated with variability analysis and randomly
distributed parameters. These include correlated and
uncorrelated random variables, probability density functions
and mass functions, regression analysis, etc.

C. Definition of data model for Analog Circuits to serve ML/AI
in EDA
Analog design experts seek to develop structured design

methodologies that provide:

• Physics-based design

• Capacity to deal with complex circuits

• Connection between hand analysis and simulation

• Sufficient design insights

• Performance trade-offs exploration

• Analog design assistance

At present, three type of analog intellectual properties exist:
Soft IP focused on AMS behavioral simulation, Hard IP focused
on layout design and migration, and Firm IP focused on
connectivity representation

Traditional EDA tools are commercially available for Soft and
Hard IPs. No efficient tools for Firm IP have been
commercially available and widely accepted by the analog
design community. Firm IP is defined as the network of
interconnections of devices such as MOS transistors, resistors,
capacitors, inductors and diodes. It was introduced in the 1980s
as the standard input format for Simulation Program with
Integrated Circuit Emphasis (SPICE) simulators. Neither its
data format nor its usage model have evolved in the decades
since. Designs for Firm IP generally rely on human tacit
knowledge (expertise, ideas, heuristics, etc.) and may lack a

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 7

clear understanding as opposed to formal design knowledge.
We strongly believe that Firm IP is the least exploited data
format by analog EDA community [9], [10].

One of the objectives of this white paper is to provide a clear
definition of a data model for analog circuits in order to
transform them into a seamless and standard form for efficient
ML/AI for analog EDA such as reuse, migration, and many
other applications. One particular step is to define a clear bridge
between tacit knowledge and formal knowledge, and determine
how to store it in a common data model on top of an Si2
OpenAccess database. Once a clear data model of analog
circuits is provided, algorithms for ML/AI can be implemented
more efficiently using the OA-based design flow.

IV. DERIVED DATA
A design flow usually involves several EDA tools

generating a great deal of data at each step, some of which is
redundant or duplicative data. AI/ML-based applications in
EDA may not need all of the data generated at each step of the
design flow. Additionally, some design data may be proprietary
to the specific EDA vendor or the design house; therefore, it is
important for the data model to support mechanisms for
extracting derived data from the existing design data and/or
analysis data. These mechanisms can involve processes
including Data Relevance, Data Cleaning, Data
Transformation, Enabling Extraction of Relevant Data, and
whether data is Above vs. Below the Line.

A. Data Relevance
1) Identification: Designing any ML application involves

identifying the relevant data for generating the ML model. The
data model should allow extraction of the relevant data from a
large set of designs and analysis data. This can be achieved
through a set of APIs supported by the data model. For
example, an EDA tool may generate log files with tons of data
which may be proprietary; however, the desired ML model may
only need certain parts of the information from the log files.
The data model APIs can enable efficient extraction of such
information while not revealing any information about the
design and particular algorithms used in the EDA tools. Each
EDA tool can define the API for querying the derived data so it
could be used for ML-based applications along with the derived
data from other tools in the design flow. Identification should
also be enabled across multiple SoC designs and IPs. For
example if a given IP is designed on multiple technology nodes
or even multiple revisions of a given technology node, one
should be able to map/extract the relevant input features/outputs
of that IP at a given design abstraction level using the data
model/API. This would enable learning across multiple
designs. One should be able to query multiple versions of RTL
for a given IP and map them to the features implemented in the
IP. The data model should support multiple tags/mappings for
a given design/IP that uniquely identify that piece of data along
with its features/derived data and design abstractions of various
known states of the design. We need the ability to connect and
identify data across multiple designs.

2) Relationships: It is often important to preserve the
relationship between the derived data and its source, and the
data model should allow such relationships to be defined. An
example would be maximum voltage on a circuit node and the
corresponding voltage waveform, where Vmaxi = Max(Wvi(t)),
where Vmaxi is the maximum voltage on the circuit node i and
Wvi(t) is the voltage waveform of the node i. The relationship
here is defined by Max(). To enable ML across design
abstractions (e.g., RTL/schematic/post-layout/extracted views
of the design), it is important that relationships between such
abstractions be captured. For example, for a given schematic
view the ability to map the extracted view would enable ML
across such design abstractions. In physical synthesis flows
(APR flows), it is important to access data from various APR
phases to build predictive models across design phases.
Similarly, analog simulation results from schematic views
could be used to accelerate post-layout extracted simulations.

3) Redundancy Removal: The derived data can be
composed from more than one design or analysis. There are
scenarios where derived data can have redundancies. These
redundancies will not yield any new information for the ML
application and hence should be removed. The data model can
support mechanisms for removing redundancies in the derived
data. For instance, if there is a simple relationship between the
input and output, we need not store the output as derived data
and store only the input and the corresponding transfer function.
For example, if we know the voltage and current across a pair
of nodes, the power dissipated in the device need not be stored
even though the EDA tool explicitly generates the power data.

4) Balanced Sampling: With large amounts of data,
sometimes with billions of data points, it may be necessary to
sample relevant data from huge data sets. This scenario can be
very common in modern chip design where the number of
elements can be extremely large and consequently the analysis
and design data generated from EDA tools will be huge; hence,
it will be computationally very expensive to train the ML model
with all of these data points. The data model should support
APIs to allow balanced sampling of the large data set to
generate a representative reduced data set with high fidelity.
The balanced sampling is important so that the derived data is
not skewed.

B. Data Cleaning
1) Outliers: The data generated from EDA tools will

invariably have outliers, and the data model should be able to
identify, document, and remove these outliers to the greatest
extent possible. This will ease the burden on the ML app
developer to identify and remove the outliers manually.

2) Missing Data: While extracting relevant data from a
design or analysis data set, there may be missing values for
certain features. The data model should be able to clearly
identify which features have missing values, and notify the user
if necessary.

3) Handling Duplicates: The data model should have the
capability to identify and remove duplicates from derived data.

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 8

Note that duplicates can occur if two or more designs or
analyses data map to the same derived data.

4) Grouping: Reducing the number of distinct features by
grouping can make ML model development easier. For
example, in a design, power/signal nets can be grouped together
based on common characteristics, instead of each net
representing a distinct feature. Composite data can be derived
from the grouped feature, and the data model should have
mechanisms to allow users to perform such operations.

C. Data Transformation
The design and analysis data from EDA tools should have a

large variety of features such as shapes, names, values, and
distributions. It is rarely feasible to use raw data directly on
machine learning models; therefore, the data model should
support data transformations. In some cases, the data
transformations may also enable hiding of proprietary
information. Many data transformations are possible, such as:

• Scaling

• Encoding categorical data

• Bias removal

• Skewed data handling

• Statistical techniques such as PCA or SVD for feature
reduction

• Discretization

• Data range checking for anomaly detection

• Data normalization

• Data clustering and compaction through unsupervised
learning

Derived data is not essential to build IP, but is vital to
understanding the behavior of IP. Data derived from peripheral
verification flows (i.e., reliability, SIPI, timing, etc.), are critical
to the IP development process.

D. Enabling Extraction of Relevant Data
There are various types of relevant data in the IP

development process. Each type is extracted by its
corresponding EDA tools and bounded by industry standard
formats. Examples include the SPF file for (parasitic) extracted
netlists and IBIS.

E. Above vs. Below the Line
We must decide whether to store every waveform shape, or

only a high-level summary (e.g., TNS, worst noise violation,
total power), or something in between. Data from safety-related
fields (i.e., ISO 26262, automotive, biomedical) should maintain
stricter archiving and distribution practices.

V. IP PROTECTION
Semiconductor design is generally known to be the art of

approximation of the physical world. This is highly defined by
the designer expertise, best practices and heuristics learned over
several years of experience.

This process of innovation requires a thorough design
model, design flow and design representation capable of
capturing design intents along with design data and secure the
overall knowledge in a hierarchical fashion. For instance:

• The designer may share partially to totally the design
steps of an analog circuit along with its design data.

• The design team manager may decide to share or hide
some of the steps and data shared by the designer

• The organization may protect its design portfolio against
any unexpected leave.

• The design process should be complete and independent
of the designer. It should be fully reproducible

• The IP protection should recognize designer’s
contributions through a patented portfolio and
compensation.

Therefore, a complete design flow based on efficient design
and data models is crucial for the IP Protection and Management
of Innovation (disruptive or Breakthrough) within a corporate
organization. We define three levels of sensitivity for
obfuscation of sensitive IP, each with different handling
guidelines.

1) Shareable data: The least sensitive data, such as
concepts, high-level model architectures, widgets or connectors
that would benefit fellow EDA and circuit designers. This level
does not contain any company proprietary, or foundry-specific
information.

2) Partially sharable data: This data is derived from
proprietary design or flows, can be modified or enhanced, but
cannot be reverse engineered. Examples include hyper
parameters and timing libraries. Decryption keys for this data
can be provided conditionally.

3) Confidential data: Data in this level include details of
proprietary designs or flows, such as architecture diagrams or
schematic netlists. This data is encrypted, and can be shared if
mandated by the flow. All confidential data should only be
executable, and not readable.

VI. INFERENCING MODELS
Machine Learning models are generated in the first place

with the intent of using them as predictions in a downstream
application or process or a solution. This is formally known as
model inferencing, and interchangeably used as model
evaluation or model query or model polling.

During the inferencing step, the user will supply a fixed set
of constant parameters as inputs to the model and get back the
predicted/processed quantity of the interested as output. For
example, if an ML model has been constructed a priori to
predict run-times of different design blocks based on inputs of
block area, wirelength, number of flops, ram count etc., the user
in a new block instance will put in the fixed values and get back
the new predicted run time along with probability. To support
specific query types an API is defined and constructed that will
work on an ML model since most models are complex in nature.

Inferencing has different modes of use in practice:

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 9

1) Offline or stand alone. In this mode, a model with its
defined inference API is queried offline, and subsequently the
predicted values are used separately in a traditional or existing
workflow. This allows for sanity checking prior to the use of
the predicted values in the downstream step.

2) Online or Integrated. In this mode, the API is embedded
as a replacement for traditional or deterministic metric of that
said parameter. This allows for seamless automation of use of
ML models. This mode is also used in Streamed applications
where on the fly decisions are made.

Challenges in Inferencing exist if the application using the
predictions is implemented on the Edge or part of an Edge-AI
implementation as in IoT applications or if each inferencing
query is time consuming or if the number of users for a given
inference API are large in number. As models get refreshed due
to staleness, some APIs also get redefined. Further, a single
model might be used for different purposes at different stages of
design or workflow. There are mitigation strategies in place
based on the problem in hand and the model hosting choices or
end-user needs.

In order to handle AI specific techniques such as inferencing,
AI/ML in EDA solutions need the expertise of the best data
scientists. However, data scientists are not trained in EDA –
they are trained to work with business, medical, video, and web
data. The design data and derived data models should be
developed assuming the data scientists are looking at that type
of data for the first time. A data scientist is looking for
consistent labeling, a familiar format such as comma separated
values or jpg, and compatibility with the Open Neural Network
Exchange (ONNX) format. This allows a data scientist to train
ML models using tools including Python ML libraries,
TensorFlow, or university research tools. The data scientist
doing the work will not need to be a circuit design and analysis
expert to be successful.

VII. DISCUSSION
The requirements for a common data model for AI/ML in EDA
are illustrated here by scenarios or use cases. This section
highlights Si2 OpenAccess and Common Data Model
Requirements, Key Analysis Domains, applications for Shape
Based Data, and a Structured Classification Methodology.

A. Si2 OpenAccess and Common Data Model Requirements
Si2 OpenAccess could be a building block for a complete

AI/ML in EDA system (Fig. 9). The common data model
requirements detailed in this paper would create an
infrastructure which defines basic AI/ML features and allows
EDA proprietary extensions. EDA suppliers would focus on
writing to a standard AI/ML interface, and providing
prepackaged AI/ML configurations for end users. Industry
standard flows and engines would be leveraged, and the end user
would own their application-specific data, features, and tests
[11].

Fig. 9. Suggestions for Role, Scope, and Interactions

B. Key Analysis Domains
1) Automotive: There has been a great advancement of

technology in automotive electronics over the past decade, and
it will continue evolving for the foreseeable future. The demand
is high for a common data model enabling sharing. In addition,
stricter rules (i.e., ISO 26262 Functional Safety) apply for
automotive-grade IPs; hence, non-automotive data models may
not entirely apply.

2) IoT: Similar to automotive, IoT technology continues to
advance and evolve, and with it, the need for a common data
model grows.

3) Consumer Product: Always a major sector in the
electronic industry, new product fields keep emerging over
time, such as smart phones, connected devices, etc.

4) Medical Devices: Stricter rules apply to this sector than
most, as data may contain sensitive personal information. The
different data formats for biomedical signals, such as EEG and
ECoG, present additional challenges in adapting to a data
model.

Each analysis domain should adopt different extraction
methodologies and subject to different scenarios (regions, local
laws, policies)

C. Shape Based Data
There are several opportunities for using machine learning-

enabled EDA flows that leverage correlations between design
physical layout information and vast amounts of silicon data to
drive significant optimizations in IC physical implementation
and semiconductor manufacturing. Examples of such
applications include: optimizing performance of DRC/DFM and
other physical verification checks using ML, ML-based design
hotspot detection and DFM fixing for yield enhancement,
employing ML to drive improvements in OPC modeling and
mask making turnaround times, ML-enabled scan test analysis

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 10

and yield debug, and design aware ML-optimized
semiconductor manufacturing recipe setup.

A standardized way to efficiently store and represent design
physical data with linkages to various types of derived data is
critical to enabling AI/ML for these applications. Along with
compact representations of geometric data for all design layers,
a mechanism of storing or deriving connectivity, annotating
shapes with voltage and power domains, parasitic and timing
information is needed as well. The ability to obfuscate and
abstract-out some types of data will be desirable to protect IP,
while still enabling downstream ML apps to make design intent-
aware optimizations, such as providing design houses the ability
to provide information to semiconductor foundries on shapes
that are part of critical, timing-sensitive nets, without providing
detailed timing information. The data model should ideally also
provide the ability to store certain types of derived data and
annotate shapes with outputs of analysis tools like lithography
simulations and Chemical-Mechanical-Polishing topography
simulations. Hierarchical representations, along with abilities to
group and cluster based on selections of stored features, will
enable efficiencies in ML training and inference flows. The data
model should also preserve the ability for APIs to perform
design location-aware grouping and sampling.

D. Structured Classification Methodology
Descriptions of current data classifications in different

design areas suggest a methodology for bridging the gap
between classification and ML data preparation and labeling by
defining common standards. When there is interest in an AI/ML
application, subject matter experts and stakeholders would meet
to define the input design and derived data which needs
structured classification, for example to and from multiple EDA
tools and/or multiple semiconductor technologies. They would
also define how the data would be referenced, for example
through a common API, and the data transformations needed for
AI/ML. The standard for this area can be published for industry
use, preferably with a prototype demonstration flow. This
standard can then be replicated and modified for new AI/ML
applications. As described in Section II-A, Fig. 4, this standard
for AI/ML data could be built on top of an existing design
database, for example Si2 OpenAccess.

VIII. CONCLUSIONS
In order to accelerate AI/ML applications to EDA, a

collaborative and coordinated approach is needed. A
prerequisite for this approach is establishing the best process for
organizing, leveraging and sharing data, since such data are the
foundation on which AI/ML applications are built. Furthermore,
from Si2 industry survey results, there is a gap in the availability
and organization for AI/ML data in EDA. A common data
model would address the data organization gap for chip
developers, EDA tool developers, IP providers and researchers
by first supporting the high interest EDA areas, design data and
derived data.

An ideal data model for EDA applications is organized
around the following components: Objects, composability and
inheritance, relationships, operations, design versus derived
data, APIs, and a means for obfuscation for sensitive IP

Further specialization is required in the space of analog
design where the following signal vectors are highly relevant for
design capture:

1) Analog simulation time-series data: data obtained
directly from SPICE simulator or after post-processing as
performance metrics.

2) Electrical design parameters: the parameters used
during a manual and typical analog design.

3) Sizes and biases: the inputs to SPICE-like simulators.
4) Small-signal parameters: parameters arising from linear

analysis performed during linearization by evaluating compact
models such as BSIM and PSP.

5) Performance models: models used to evaluate linear and
nonlinear performances.

In the space of digital design, one needs a data model to

answer questions at the intersection of logic, placement, wiring,
timing, power, and noise, among other variables. In particular,
what is still needed, is an agreed-upon standard for efficient
storage of derived data such as timing, noise, power in an offline
data model, as well as a means to link derived data back to the
design data objects. This superset of design data and derived
data, all tightly coupled and linked, gives rise to a unified
persistent data model enabling AI/ML in EDA.

A design flow usually involves several EDA tools generating
a great deal of data at each step, some of which is redundant or
duplicate data. AI/ML-based applications in EDA may not need
all of the data generated at each step of the design flow.
Additionally, some design data may be proprietary to the
specific EDA vendor or the design house; therefore, it is
important for the data model to support mechanisms for
extracting derived data from the existing design data and/or
analysis data. These mechanisms can involve processes
including Data Relevance, Data Cleaning, Data Transformation,
Enabling Extraction of Relevant Data, and whether data is
Above versus Below the Line.

A complete design flow based on efficient design and data
models is crucial for the IP Protection and Management of
Innovation (disruptive or Breakthrough) within a corporate
organization. We define three levels of sensitivity for
obfuscation of sensitive IP, each with different handling
guidelines: shareable data, partially sharable data, and
confidential data.

 The common data model requirements detailed in this work
define an infrastructure for common AI/ML features with EDA
proprietary extensions. EDA suppliers would focus on writing
to a standard AI/ML interface and provide prepackaged AI/ML
configurations for end users. Industry standard flows and
engines would be leveraged, and the end user would own their
analysis results. Si2 OpenAccess could be a building block for a
complete AI/ML in EDA system. These subject matter experts
agree that a standard, common method for classification and
structure of machine learning training and inference data for
interoperability is critical to enable and accelerate the use of
artificial intelligence and machine learning in semiconductor
electronic design automation.

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 11

REFERENCES
[1] B. Shook et al., “MLParest: Machine Learning based Parasitic Estimation

for Custom Circuit Design,” presented at the Design Automation Conf.,
Online, July 20-24, 2020.

[2] A. Mirhoseini et al., “Chip Placement with Deep Reinforcement
Learning,” 2020, https://arxiv.org/pdf/2004.10746.pdf

[3] A. Mirhoseini et al., “Device Placement Optimization with
Reinforcement Learning,” 2017, https://arxiv.org/pdf/1706.04972.pdf

[4] H. Wang et al., “GCN-RL Circuit Designer: Transferable Transistor
Sizing with Graph Neural Networks and Reinforcement Learning,” 2020,
https://arxiv.org/abs/2005.00406

[5] X. Li, N. Qi, Y. He, and B. McMillan, (2019) “Practical Resource Usage
Prediction Method for Large Memory Jobs in HPC Clusters,” in Lecture
Notes in Computer Science, vol. 11416. D. Abramson, B. de Supinski,
Ed., Singapore, Mar. 2019, pp. 1-18, doi: https://doi.org/10.1007/978-3-
030-18645-6

[6] L. Stok et al., “Empowering the Designer Through Advanced Analytics
and Machine Learning,” presented at the 56th Design Automation Conf.,
Las Vegas, NV, USA, June 2-6, 2019.

[7] L. Stok. (2015). EDA 3.0 Time to refactor Logic Synthesis [PowerPoint].
Available: https://bit.ly/Leon_Stok_EDA_3

[8] C. Visweswariah et al., "First-Order Incremental Block-Based Statistical
Timing Analysis," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 10, pp. 2170-2180, Oct.
2006, doi: 10.1109/TCAD.2005.862751

[9] A. Malak et al., “Fast multidimensional optimization of analog circuits
initiated by monodimensional global Peano explorations,” Integration,
vol. 48, pp. 198-212, Jan. 2015, doi:
https://doi.org/10.1016/j.vlsi.2014.04.002

[10] R. Iskander, M. Louërat, and A. Kaiser, “Hierarchical sizing and biasing
of analog firm intellectual properties,” Integration, vol. 46, no. 2, pp. 172-
188, Mar. 2013, doi: https://doi.org/10.1016/j.vlsi.2012.01.001

[11] J. D. Masters, “Genetic algorithm EDA experiment and suggestions for
Si2 AI/ML WG,” unpublished.

