
 

 

 

 

A Collaborative Data Model for AI/ML in EDA 
August 19, 2020 

 
 
 
 
 
 
 
 

 
Kerim Kalafala, IBM 
Veeravanallur Parthasarathy, AMD 
Norman Chang, ANSYS 
Akhilesh Kumar, ANSYS 
Elias Fallon, Cadence Design Systems 
Sriram Madhavan, GLOBALFOUNDRIES 
Prateek Bhansali, Intel Corporation 
Srinivas Bodapati, Intel Corporation 

Chandramouli Kashyap, Intel Corporation 
James Masters, Intel Corporation 
Ramy Iskander, Intento Design 
Larg Weiland, PDF Solutions 
Karthik Aadithya, Sandia National Laboratory 
Boon-Siang Cheah, Synopsys 
Mengdi He, Synopsys 
Leigh Anne Clevenger, Si2 

 
 
 
 
 
 
 
Published by 
Silicon Integration Initiative, Inc. (Si2™)  
12335 Hymeadow Dr, Suite 450 
Austin, TX 78750 
 
This document is subject to protection under Copyright Laws:  
Copyright © 2020 Si2. All Rights Reserved Worldwide.  
 
Requests for copyrighted material usage should be made to Leigh Anne Clevenger, 
leighanne.clevenger@si2.org. 

 



 
 

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 2 

A Collaborative Data Model for AI/ML in EDA 

Abstract—A standard, common method for classification and 
structure of machine learning training and inference data for 
interoperability is critical to enable and accelerate the use of 
artificial intelligence and machine learning in semiconductor 
electronic design automation. Subject matter experts from across 
the semiconductor and EDA industry highlight the differences and 
common threads in developing industry standards for AI/ML in 
EDA application data for design areas including digital, analog, 
shapes-based and IP development. The authors conclude that in 
order to accelerate AI/ML applications for EDA, a collaborative 
and coordinated approach is needed. A prerequisite for this 
approach is establishing the best process for organizing, 
leveraging and sharing data. Si2 industry survey results show a 
gap in the availability and organization for AI/ML data in EDA. 
A common data model would address the data organization gap 
for chip developers, EDA tool developers, IP providers and 
researchers by first supporting the high interest EDA areas, design 
data and derived data. 

Keywords— artificial intelligence, classification, EDA, machine 
learning, standards 

I. INTRODUCTION 
What is needed to enable and accelerate the use of artificial 

intelligence and machine learning in electronic design 
automation? Subject matter experts from across the 
semiconductor and EDA industries describe in this work that a 
standard, common method for classification and structure of 
ML training and inference data for EDA interoperability is 
critical. Their views on design areas including digital, analog, 
shapes-based and IP development highlight the differences and 
common threads in developing industry standards for AI/ML in 
EDA application data. 

In the following sections, this work provides background 
and motivation for machine learning and IC design, describes 
EDA design data for ML, defines derived data, discusses IP 
protection for ML data, presents modes of inferencing models, 
discusses use case applications for a common data model, and 
draws conclusions on AI/ML in EDA data model opportunities. 

II. BACKGROUND AND MOTIVATION 
 

Integrated Circuit (IC) design is a complex process, during 
which billions of nanoscale transistor devices are fabricated on 
a silicon die and connected via intricate metal layers. The final 
product is an IC which powers much of our life today.  

Given the intricacy of modern-day ICs, as shown in Fig. 1, 
Electronic Design Automation (EDA) plays a critical role in the 
design process. Even in the presence of EDA tools, however, a 
single IC can take months or years to design. Accelerating this 
timeline would reduce cost and time to market, benefitting all 
industry stakeholders. Machine Learning (ML) and Artificial 
Intelligence (AI) may be the solution. Important to the 

motivation of this study are Machine Learning and IC Design, 
the Demand for Data, and the Structure of the Data Model. 

A. Machine Learning and IC Design 
Before going further, it is important to understand the kinds 

of problems ML is intended to solve. AI/ML is best suited for 
applications where a great deal of data exists for training and 
evaluation, patterns for leveraging past experiences are 
common, and the problem either cannot be solved 
deterministically using physical principles or is exponentially 
complex. The first criterion is easily satisfied for many 
problems in IC design. Data from EDA tools is plentiful in the 
forms of placement, routing, netlists, characterized libraries, 
simulation outputs, masks, layout and extraction files. One can 
leverage this data, and the patterns embedded within, to 
generate new data using ML [1]. For example, the topology of 
the design, hierarchy in the design, the symmetry in layouts, 
repeating patterns in waveforms, etc. The second criterion is 
also satisfied for many problems in EDA design. While some 
issues can be mathematically solved using physical 
principles—such as circuit simulation, which combines device 
physics equations with numerical techniques to solve 
Differential Algebraic Equations (DAEs)—there are many 
applications in which NP-hard problems abound and heuristics 
are used to solve them. Examples of the latter include finding 
the optimal routing in a design given an initial placement of 
logic gates or transistors [2], [3], determining the optimal 
setting of parameters for logic and physical synthesis, analog 
circuit optimization and transistor sizing [4], etc.  ML can also 
be applied to the compute infrastructure and scheduling for 
solving CAD problems, such as identifying the correct memory 
[5] and core configuration of machine to launch a CAD job in 
the cloud.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Example of a high-level IC design flow.   
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While there is ample scope for application of AI/ML to 
EDA, current efforts have been scattered across academia, 
research labs, and industry. To accelerate AI/ML applications 
to EDA, a collaborative and coordinated approach is needed. A 
prerequisite for this approach is establishing the best process 
for organizing, leveraging and sharing data, since such data are 
the foundation on which AI/ML applications are built. This 
paper proposes a data model to facilitate this interaction. The 
data model must satisfy the needs of the various persons who 
will be interacting with it, including CAD engineers (both EDA 
companies and CAD groups within design houses), design 
engineers, researchers, and academics. For example, a 
researcher would use the data model to develop an optimal ML 
algorithm, whereas a design engineer may test the performance 
of an ML algorithm on the data model, and a CAD engineer 
may want to create a product that encapsulates various ML 
algorithms and use the data model to benchmark and qualify. 
The data model must support each of these use cases. 

B. Demand for Data 
EDA and semiconductor stakeholders completed an 

industry-wide Si2 survey from April 15-May 15, 2020. Two 
hundred respondents shared their success, areas of interest, and 
roadblocks in AI/ML for EDA. The goal of the Special Interest 
Group is to use this information to drive industry and research 
direction, filling the development, standards and interoperability 
gaps to enable greater adoption of AI/ML in EDA. The survey 
respondents highlighted three areas for an AI/ML in EDA 
methodology flow: design and derived data, data organization, 
and a reference flow with associated Application Programming 
Interface (API). This section focuses on the interdependence of 
requirements for design data, derived data, and data organization 
for AI/ML in EDA training and inference. 

Reviewing all the responses for the importance of training 
data, availability and a common data model is not unlike 
analyzing the effectiveness of online training videos and the 
value of search engines. From the millions of videos online, a 
user wants the top responses to given search criteria. Finding the 
video is what users want. They do not want to know the details 
of the search engine. In the same way, survey respondents put 
training data availability at a higher importance than a common 
data model (Fig. 2), but the quality of the data model will 
determine how useful the data returned by the model will be. 
Viewed together, ML training data availability and a common 
data model are valuable for AI/ML in EDA adoption. 

Survey questions also addressed concerns about the lack of 
training data and a common data model. This is an established 
survey technique to check the consistency of results by asking 
the negative of a previous question. Interestingly, a different set 
of respondents expressed concerns about lack of training data, 
but the results for lack of a common data model were consistent 
(Fig. 2) 

Respondents indicated the areas in which they are testing 
AI/ML Methods. There was a wide range of interest, but over 
25% of respondents indicated simulation, place and route, 
compute efficiency (performance), and verification and debug 
were priorities (Fig. 3). These would be the areas most 
compelling to users for the first implementation of a common 
data model. 

Respondents were asked to identify the types of design data 
they are using or would use for ML training and inference. Their 
answers provide a starting point for the forms of design data and 
derived data to be supported by a common data model. Data 
relating to simulation, layout, place and route, timing, power, 
verification, design rules, and standard cells were important to 
over 25% of respondents (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Importance of training data availability and a common data model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Concern about lack of training data availability and a common data 

model by area 
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 From these industry survey results, there is a gap in the 
availability and organization for AI/ML data in EDA. A 
common data model would address the data organization gap for 
chip developers, EDA tool developers, IP providers and 
researchers by first supporting the high interest EDA areas, 
design data and derived data. Without such a data model, the 
industry faces: 

• Lower design productivity 

• Lesser design quality 

• Poorer design insight  

• Increased design fabrication respins 

• Higher costs overall 

• Reduced market competitiveness 

• More difficult reuse, migration and modification 
processes 

• No capitalization on expertise 

• No design resources improvement, including analog 
experts and EDA tools 

We look at the requirements of the data model next. 

C. Structure of the Data Model 
A data model must be able to represent the design at various 

abstraction levels, from architecture to layout level. An ideal 
data model for EDA applications is organized around the 
following components. 

1) Objects: These are design objects such as registers (RTL 
phase), gates (digital design), devices (analog design), 
polygons (floor planning, placement, layout), etc. Each object 
must have appropriate attributes which describe the object 
being considered. For instance, attributes for transistors could 
be the device type, the dimensions, the number of fins, etc., 
while the attributes for layout objects may be the layer, the 
color, the dimensions, and so on.  

2) Composability and inheritance: The objects may be 
composed of other objects—for example, an ALU will be made 
of gates. Similarly, inheritance must be supported using “is-a” 
relationship (i.e., a transistor is a device, as is a capacitor). 

3) Relationships: The different objects in a design are 
related to each other, either through a physical or an abstract 
notion of connectivity. Examples of the former include the 
interconnect between gates and transistors, and the wiring 
between polygons. An abstract relationship could represent the 
transactions between two architectural objects. A relationship 
may also describe special kinds of objects, each with their own 
attributes. 

4) Operations: We may wish to perform an operation on 
objects and relationships, such as computing the timing of an 
arc on a gate object. Similarly, we may wish to propagate 
waveforms through relationships. A related concept is storing 
the results of an operation on the objects and relationships. 

5) Design versus derived data: Whereas the “objects” 
described above represent design data such as registers, 
devices, wires, and shapes, “derived” data represents simulation 
results calculated with respect to design data.  Examples of 
“derived” data include results of noise, power, logical 
verification analysis, and static timing analysis. One way to 
distinguish design from derived data is that design data 
represents the physical implementation which will be 
manufactured as an integrated circuit (this includes higher level 
representations such as a “netlist,” which is composed of a set 
of circuits and wires, each of which is then represented as a set 
of shapes). On the other hand, derived data represents the 
analysis that determines whether a given implementation will 
meet all of its design requirements. 

6) APIs: We need to provide APIs to get object attributes, 
define custom attributes, perform computations, get results etc. 
Such an API layer should ideally be compatible with existing 
big-data and machine learning frameworks such as 
TensorFlow, Pandas, etc. 

7) Obfuscation: For IP-sensitive attributes on objects and 
results of computations, a layer must be provided to hide the 
true values within the data model and fetch the modified ones 
for the user. This layer needs to work with the API layer defined 
above. Applications could include obfuscation of the device-
related attributes or the true delays of a timing arc. 

8) Revision History: A data model must not only represent 
all design data but also be able to access the data of intermittent 
design stages. Therefore, the API needs to interact with various 
revision control systems used in EDA. There should be a 
standard header on every data set. Since AI/ML is itself an 
interactive process, it is beneficial to also track the model 
creation process and all related data to enable data analytics like 
benchmarking and quality metric monitoring over time.  
 

III. DESIGN DATA 
 

Design data for analog and digital design can be a fundamental 
part of an AI/ML training and inference dataset. Described here 
are the relationships between circuit design data generated by 
EDA tools and the potential new uses of this data for AI/ML 
training and inference for improved design and performance. 
These include a unified data model, data model classes, and a 
definition of a data model for analog circuits. 
 

A. Unified Data Model: Digital Example 
Physical design of digital ICs is a highly iterative process.   

Between each iteration, questions are often asked, and analysis 
performed to determine what happened, why it happened, and 
how to improve the design [6].  Therefore, we need a system 
which allows us to answer questions at the intersection of logic, 
placement, wiring, timing, power, and noise, among other 
variables. Designers also cannot be restricted to asking 
questions during the implementation flow, meaning a tool-
agnostic data model to query data offline through an efficient 
API layer is sorely needed. 
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As shown in Fig. 4, existing models such as Si2 
OpenAccess are well suited for representing design data. What 
is still needed, however, is an agreed-upon standard for efficient 
storage of derived data such as timing, noise, power in an 
offline data model, as well as a means to link derived data back 
to the design data objects. This superset of design data and 
derived data, all tightly coupled and linked, gives rise to a 
unified persistent data model enabling AI/ML in EDA. 

As illustrated in Fig. 5, such a tightly coupled data model 
requires that derived data such as timing, power, and noise are 
treated as first class citizens (as opposed to generic properties 
annotated on an underlying design data representation).   

Furthermore, to enable tool/flow correlation, we need the 
ability to extract both design and derived data (denoted “DD” 
in Fig. 6) at multiple points in the implementation flow.  This 
approach requires a highly compact unified data model 
including both design and derived data, which can be written 
quickly with minimal overhead to the implementation flow.   

 
 
Fig. 4. High-level representation of a Unified Persistent Data Model for 

enabling AI/ML in EDA.1 

 
 
 
 
 
 
 
 
 
 
Fig. 5. Derived data such as timing as a first class citizen of a Unified 

Persistent Data Model.1 

 

 

 

 

 
Fig. 6. Extracting design and derived data from multiple points along the 

implementation flow (courtesy Nathaniel Hieter, IBM). 

In addition to the iterative nature of digital design closure, 
physical synthesis, place and route, etc. tools typically contain 
hundreds of options which control various behaviors.  
Therefore, to interrogate data effectively, it is important for a 
common data model to represent the various tool parameters that 
were used to arrive at a particular design point.  For example, in 
the space of ML applied to EDA, one may be interested in 
building an inferencing engine to predict an optimal set of tool 
parameters based on various input features (e.g., number of logic 
elements, target frequency and power, available area, etc.).  To 
train such an inferencing engine, a large amount of labeled data 
would likely be required, where the labels include various tool 
settings [7].   

Modern digital design also involves closing to requirements 
across a varied process, voltage, temperature space.  Many 
techniques have been developed over the years to efficiently 
analyze design data across process-voltage-temperature (PVT) 
points, including statistical timing (SSTA) and multi-mode-
multi-corner (MMMC) analysis. It is therefore an important 
feature of a common data model to be able to represent analysis 
of design data across multiple PVT combinations.   Such a 
representation will aid in the development of ML applications in 
EDA including engines which may perform inferencing of 
design characteristics across PVT space based upon a select 
number of discrete measurements (reducing the need for full 
simulation in all PVT corners, replacing this with inferencing 
engines capable of predicting performance at non-simulated 
corners) [8]. 

B. Data Model Classes: Analog Example 
Analog design comprises two distinct phases: pre-layout and 

post-layout, with layout/extraction separating them as shown in 
Fig. 7. Each phase involves certain steps which perform analysis 
and transformations on the underlying analog block and 
generates a lot of data. Although shown sequential, in practice a 
lot of iteration happens between difference phases.  

 
 

 

 

 

 

 
Fig. 7. Typical Analog Design Cycle: Process-Voltage-Temperature (PVT), 

Electrical Rule Check (ERC), Electro-Static Discharge (ESD), Layout 
Versus Schematic (LVS) 

To capture design data from the various stages of a typical 
analog design cycle, we propose to construct a data model with 
the following components. Each class specified below should 
have a well-defined API to perform data queries, 
manipulations, and transformations. 

1) Hypergraph class to represent analog circuits: In the 
hypergraph class, circuit connection points are represented via 
nodes, and devices that make up circuits are represented via 
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hyperedges, or ordered sequences of nodes. This method is 
general enough to capture any analog circuit topology. Fig. 8 
shows an example. 

2) Hyperedge class: The hyperedge class can be used for 
devices and interconnections between devices; whenever two 
devices share a connection point, their respective hyperedges 
will share a node. When hyperedges are used for storing 
devices, contextual attributes like associated branch currents, 
reliability characteristics, number of fins, geometrical location 
in placement/layout, and contact resistances can be added. 
When hyperedges are used for storing interconnection between 
devices, they can capture the number of pins, routing layer, pin 
locations, etc.  

3) Node class: The hypergraph node class is used to capture 
simulation data such as voltage waveforms represented by time-
value pairs and initial conditions used to carry out circuit 
simulations.  

4) Device macromodel class: This class captures the 
electrical behavior of analog devices such as resistors, 
capacitors, diodes, and transistors. In analog circuit design, it is 
vitally important to model both the DC and transient behavior 
of such devices. Typical device model formulations use 
“current” functions as well as “charge” functions for modelling 
such behaviors. These functions can be modelled using 
constructs such as Directed Acyclic Graphs, or Sequence Of 
Computation-type data structures. For reference, APIs 
representing devices and their core functions can be found in 
academia and industry; for example, the ModSpec API used in 
the MAPP platform developed at UC Berkeley, the Spyce and 
Xyce device APIs developed at Sandia National Labs, and the 
language constructs used in Verilog A. 

 
 
 

 
 

 
 
 
 
 
 

Fig. 8. An example of a hypergraph class representing analog circuits 

5) Circuit macromodel class: This class allows modeling, 
storage, and querying of analog circuit functionality. That is, 
given input conditions (PVT corners, load conditions, input 
waveforms, analysis type, etc.), one can obtain the circuit’s 
outputs (output waveforms or designated scalar measurements 
such as power drawn) by issuing appropriate queries to 
instances of this macromodel class.  

6) Computational resource class: This class facilitates the 
prediction of computational resources required for process 
steps such as simulation, extraction, placement, and routing. 
APIs for this class should allow capturing circuit characteristics 

such as device count, type of elements, the “complexity” of the 
underlying device, circuit, and sub-circuit macromodels, circuit 
simulation conditions and parameters (for example, the 
minimum time-step for transient simulation or the number of 
harmonics for Harmonic Balance simulation), metal layers (for 
routing), track information (for routing), area constraints (for 
placement), etc., all of which will be used to predict the 
computational resources (runtime and memory) required for 
circuit analyses and simulations. 

7) Continuous waveform class: Analog circuits and 
simulations predominantly feature continuous waveforms; 
these waveforms can be time-domain or frequency-domain, 
real-valued or complex-valued, and scalar-valued or vector-
valued. We need a class to represent these waveforms, and also 
to intelligently query such waveforms using on-the-fly 
transformations such as smoothing, interpolation, and 
extrapolation. Such queries should support both normal 
lookups (what is the waveform value at t=1ns?) and inverse 
lookups (at what time does the waveform cross 1V?). 

8) Classes for statistical data and distributions: As 
mentioned above, manufacturing variability is a key factor in 
analog circuit design. We believe a comprehensive data model 
should include features to represent statistical variables and 
quantities associated with variability analysis and randomly 
distributed parameters. These include correlated and 
uncorrelated random variables, probability density functions 
and mass functions, regression analysis, etc. 

C. Definition of data model for Analog Circuits to serve ML/AI 
in EDA 
Analog design experts seek to develop structured design 

methodologies that provide:  

• Physics-based design 

• Capacity to deal with complex circuits  

• Connection between hand analysis and simulation 

• Sufficient design insights  

• Performance trade-offs exploration 

• Analog design assistance  

At present, three type of analog intellectual properties exist: 
Soft IP focused on AMS behavioral simulation, Hard IP focused 
on layout design and migration, and Firm IP focused on 
connectivity representation 

Traditional EDA tools are commercially available for Soft and 
Hard IPs. No efficient tools for Firm IP have been 
commercially available and widely accepted by the analog 
design community. Firm IP is defined as the network of 
interconnections of devices such as MOS transistors, resistors, 
capacitors, inductors and diodes. It was introduced in the 1980s 
as the standard input format for Simulation Program with 
Integrated Circuit Emphasis (SPICE) simulators. Neither its 
data format nor its usage model have evolved in the decades 
since. Designs for Firm IP generally rely on human tacit 
knowledge (expertise, ideas, heuristics, etc.) and may lack a 
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clear understanding as opposed to formal design knowledge. 
We strongly believe that Firm IP is the least exploited data 
format by analog EDA community [9], [10]. 

One of the objectives of this white paper is to provide a clear 
definition of a data model for analog circuits in order to 
transform them into a seamless and standard form for efficient 
ML/AI for analog EDA such as reuse, migration, and many 
other applications. One particular step is to define a clear bridge 
between tacit knowledge and formal knowledge, and determine 
how to store it in a common data model on top of an Si2 
OpenAccess database. Once a clear data model of analog 
circuits is provided, algorithms for ML/AI can be implemented 
more efficiently using the OA-based design flow. 

IV. DERIVED DATA 
A design flow usually involves several EDA tools 

generating a great deal of data at each step, some of which is 
redundant or duplicative data. AI/ML-based applications in 
EDA may not need all of the data generated at each step of the 
design flow. Additionally, some design data may be proprietary 
to the specific EDA vendor or the design house; therefore, it is 
important for the data model to support mechanisms for 
extracting derived data from the existing design data and/or 
analysis data. These mechanisms can involve processes 
including Data Relevance, Data Cleaning, Data 
Transformation, Enabling Extraction of Relevant Data, and 
whether data is Above vs. Below the Line. 

A. Data Relevance 
1) Identification: Designing any ML application involves 

identifying the relevant data for generating the ML model. The 
data model should allow extraction of the relevant data from a 
large set of designs and analysis data. This can be achieved 
through a set of APIs supported by the data model. For 
example, an EDA tool may generate log files with tons of data 
which may be proprietary; however, the desired ML model may 
only need certain parts of the information from the log files. 
The data model APIs can enable efficient extraction of such 
information while not revealing any information about the 
design and particular algorithms used in the EDA tools. Each 
EDA tool can define the API for querying the derived data so it 
could be used for ML-based applications along with the derived 
data from other tools in the design flow. Identification should 
also be enabled across multiple SoC designs and IPs. For 
example if a given IP is designed on multiple technology nodes 
or even multiple revisions of a given technology node, one 
should be able to map/extract the relevant input features/outputs 
of that IP at a given design abstraction level using the data 
model/API. This would enable learning across multiple 
designs. One should be able to query multiple versions of RTL 
for a given IP and map them to the features implemented in the 
IP. The data model should support multiple tags/mappings for 
a given design/IP that uniquely identify that piece of data along 
with its features/derived data and design abstractions of various 
known states of the design. We need the ability to connect and 
identify data across multiple designs. 

2) Relationships: It is often important to preserve the 
relationship between the derived data and its source, and the 
data model should allow such relationships to be defined. An 
example would be maximum voltage on a circuit node and the 
corresponding voltage waveform, where Vmaxi = Max(Wvi(t)), 
where Vmaxi is the maximum voltage on the circuit node i and 
Wvi(t) is the voltage waveform of the node i. The relationship 
here is defined by Max(). To enable ML across design 
abstractions (e.g., RTL/schematic/post-layout/extracted views 
of the design), it is important that relationships between such 
abstractions be captured. For example, for a given schematic 
view the ability to map the extracted view would enable ML 
across such design abstractions. In physical synthesis  flows 
(APR flows), it is important to access data from various APR 
phases to build predictive models across design phases. 
Similarly, analog simulation results from schematic views 
could be used to accelerate post-layout extracted simulations. 

3) Redundancy Removal: The derived data can be 
composed from more than one design or analysis. There are 
scenarios where derived data can have redundancies. These 
redundancies will not yield any new information for the ML 
application and hence should be removed. The data model can 
support mechanisms for removing redundancies in the derived 
data. For instance, if there is a simple relationship between the 
input and output, we need not store the output as derived data 
and store only the input and the corresponding transfer function. 
For example, if we know the voltage and current across a pair 
of nodes, the power dissipated in the device need not be stored 
even though the EDA tool explicitly generates the power data. 

4) Balanced Sampling: With large amounts of data, 
sometimes with billions of data points, it may be necessary to 
sample relevant data from huge data sets. This scenario can be 
very common in modern chip design where the number of 
elements can be extremely large and consequently the analysis 
and design data generated from EDA tools will be huge; hence, 
it will be computationally very expensive to train the ML model 
with all of these data points. The data model should support 
APIs to allow balanced sampling of the large data set to 
generate a representative reduced data set with high fidelity. 
The balanced sampling is important so that the derived data is 
not skewed.  

B. Data Cleaning 
1) Outliers: The data generated from EDA tools will 

invariably have outliers, and the data model should be able to 
identify, document, and remove these outliers to the greatest 
extent possible. This will ease the burden on the ML app 
developer to identify and remove the outliers manually.  

2) Missing Data: While extracting relevant data from a 
design or analysis data set, there may be missing values for 
certain features. The data model should be able to clearly 
identify which features have missing values, and notify the user 
if necessary.  

3) Handling Duplicates: The data model should have the 
capability to identify and remove duplicates from derived data. 
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Note that duplicates can occur if two or more designs or 
analyses data map to the same derived data. 

4) Grouping: Reducing the number of distinct features by 
grouping can make ML model development easier. For 
example, in a design, power/signal nets can be grouped together 
based on common characteristics, instead of each net 
representing a distinct feature. Composite data can be derived 
from the grouped feature, and the data model should have 
mechanisms to allow users to perform such operations.  

C. Data Transformation 
The design and analysis data from EDA tools should have a 

large variety of features such as shapes, names, values, and 
distributions. It is rarely feasible to use raw data directly on 
machine learning models; therefore, the data model should 
support data transformations. In some cases, the data 
transformations may also enable hiding of proprietary 
information. Many data transformations are possible, such as:  

• Scaling 

• Encoding categorical data 

• Bias removal 

• Skewed data handling 

• Statistical techniques such as PCA or SVD for feature 
reduction 

• Discretization 

• Data range checking for anomaly detection 

• Data normalization 

• Data clustering and compaction through unsupervised 
learning 

Derived data is not essential to build IP, but is vital to 
understanding the behavior of IP. Data derived from peripheral 
verification flows (i.e., reliability, SIPI, timing, etc.), are critical 
to the IP development process. 

D. Enabling Extraction of Relevant Data 
There are various types of relevant data in the IP 

development process. Each type is extracted by its 
corresponding EDA tools and bounded by industry standard 
formats. Examples include the SPF file for (parasitic) extracted 
netlists and IBIS. 

E. Above vs. Below the Line 
We must decide whether to store every waveform shape, or 

only a high-level summary (e.g., TNS, worst noise violation, 
total power), or something in between. Data from safety-related 
fields (i.e., ISO 26262, automotive, biomedical) should maintain 
stricter archiving and distribution practices.  

V. IP PROTECTION 
Semiconductor design is generally known to be the art of 

approximation of the physical world. This is highly defined by 
the designer expertise, best practices and heuristics learned over 
several years of experience. 

This process of innovation requires a thorough design 
model, design flow and design representation capable of 
capturing design intents along with design data and secure the 
overall knowledge in a hierarchical fashion. For instance: 

• The designer may share partially to totally the design 
steps of an analog circuit along with its design data. 

• The design team manager may decide to share or hide 
some of the steps and data shared by the designer 

• The organization may protect its design portfolio against 
any unexpected leave. 

• The design process should be complete and independent 
of the designer. It should be fully reproducible 

• The IP protection should recognize designer’s 
contributions through a patented portfolio and 
compensation. 

Therefore, a complete design flow based on efficient design 
and data models is crucial for the IP Protection and Management 
of Innovation (disruptive or Breakthrough) within a corporate 
organization. We define three levels of sensitivity for 
obfuscation of sensitive IP, each with different handling 
guidelines. 

1) Shareable data: The least sensitive data, such as 
concepts, high-level model architectures, widgets or connectors 
that would benefit fellow EDA and circuit designers. This level 
does not contain any company proprietary, or foundry-specific 
information.  

2) Partially sharable data: This data is derived from 
proprietary design or flows, can be modified or enhanced, but 
cannot be reverse engineered. Examples include hyper 
parameters and timing libraries. Decryption keys for this data 
can be provided conditionally. 

3) Confidential data: Data in this level include details of 
proprietary designs or flows, such as architecture diagrams or 
schematic netlists. This data is encrypted, and can be shared if 
mandated by the flow. All confidential data should only be 
executable, and not readable. 

VI. INFERENCING MODELS 
Machine Learning models are generated in the first place 

with the intent of using them as predictions in a downstream 
application or process or a solution.  This is formally known as 
model inferencing, and interchangeably used as model 
evaluation or model query or model polling. 

During the inferencing step, the user will supply a fixed set 
of constant parameters as inputs to the model and get back the 
predicted/processed quantity of the interested as output. For 
example, if an ML model has been constructed a priori to 
predict run-times of different design blocks based on inputs of 
block area, wirelength, number of flops, ram count etc., the user 
in a new block instance will put in the fixed values and get back 
the new predicted run time along with probability. To support 
specific query types an API is defined and constructed that will 
work on an ML model since most models are complex in nature.  

Inferencing has different modes of use in practice: 



 
 

A Collaborative Data Model for AI/ML Applications in EDA. Copyright © 2020 by Si2, Inc. All Rights Reserved. 9 

1) Offline or stand alone. In this mode, a model with its 
defined inference API is queried offline, and subsequently the 
predicted values are used separately in a traditional or existing 
workflow.  This allows for sanity checking prior to the use of 
the predicted values in the downstream step.  

2) Online or Integrated. In this mode, the API is embedded 
as a replacement for traditional or deterministic metric of that 
said parameter. This allows for seamless automation of use of 
ML models. This mode is also used in Streamed applications 
where on the fly decisions are made.  

Challenges in Inferencing exist if the application using the 
predictions is implemented on the Edge or part of an Edge-AI 
implementation as in IoT applications or if each inferencing 
query is time consuming or if the number of users for a given 
inference API are large in number. As models get refreshed due 
to staleness, some APIs also get redefined. Further, a single 
model might be used for different purposes at different stages of 
design or workflow. There are mitigation strategies in place 
based on the problem in hand and the model hosting choices or 
end-user needs. 

In order to handle AI specific techniques such as inferencing, 
AI/ML in EDA solutions need the expertise of the best data 
scientists. However, data scientists are not trained in EDA – 
they are trained to work with business, medical, video, and web 
data. The design data and derived data models should be 
developed assuming the data scientists are looking at that type 
of data for the first time. A data scientist is looking for 
consistent labeling, a familiar format such as comma separated 
values or jpg, and compatibility with the Open Neural Network 
Exchange (ONNX) format. This allows a data scientist to train 
ML models using tools including Python ML libraries, 
TensorFlow, or university research tools. The data scientist 
doing the work will not need to be a circuit design and analysis 
expert to be successful. 

VII. DISCUSSION 
The requirements for a common data model for AI/ML in EDA 
are illustrated here by scenarios or use cases. This section 
highlights Si2 OpenAccess and Common Data Model 
Requirements, Key Analysis Domains, applications for Shape 
Based Data, and a Structured Classification Methodology. 

A. Si2 OpenAccess and Common Data Model Requirements 
Si2 OpenAccess could be a building block for a complete 

AI/ML in EDA system (Fig. 9). The common data model 
requirements detailed in this paper would create an 
infrastructure which defines basic AI/ML features and allows 
EDA proprietary extensions. EDA suppliers would focus on 
writing to a standard AI/ML interface, and providing 
prepackaged AI/ML configurations for end users. Industry 
standard flows and engines would be leveraged, and the end user 
would own their application-specific data, features, and tests 
[11]. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Suggestions for Role, Scope, and Interactions 

B. Key Analysis Domains 
1) Automotive: There has been a great advancement of 

technology in automotive electronics over the past decade, and 
it will continue evolving for the foreseeable future. The demand 
is high for a common data model enabling sharing. In addition, 
stricter rules (i.e., ISO 26262 Functional Safety) apply for 
automotive-grade IPs; hence, non-automotive data models may 
not entirely apply. 

2) IoT: Similar to automotive, IoT technology continues to 
advance and evolve, and with it, the need for a common data 
model grows. 

3) Consumer Product: Always a major sector in the 
electronic industry, new product fields keep emerging over 
time, such as smart phones, connected devices, etc.  

4) Medical Devices: Stricter rules apply to this sector than 
most, as data may contain sensitive personal information. The 
different data formats for biomedical signals, such as EEG and 
ECoG, present additional challenges in adapting to a data 
model. 

Each analysis domain should adopt different extraction 
methodologies and subject to different scenarios (regions, local 
laws, policies) 

C. Shape Based Data 
There are several opportunities for using machine learning-

enabled EDA flows that leverage correlations between design 
physical layout information and vast amounts of silicon data to 
drive significant optimizations in IC physical implementation 
and semiconductor manufacturing. Examples of such 
applications include: optimizing performance of DRC/DFM and 
other physical verification checks using ML, ML-based design 
hotspot detection and DFM fixing for yield enhancement, 
employing ML to drive improvements in OPC modeling and 
mask making turnaround times, ML-enabled scan test analysis 
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and yield debug, and design aware ML-optimized 
semiconductor manufacturing recipe setup. 

A standardized way to efficiently store and represent design 
physical data with linkages to various types of derived data is 
critical to enabling AI/ML for these applications. Along with 
compact representations of geometric data for all design layers, 
a mechanism of storing or deriving connectivity, annotating 
shapes with voltage and power domains, parasitic and timing 
information is needed as well. The ability to obfuscate and 
abstract-out some types of data will be desirable to protect IP, 
while still enabling downstream ML apps to make design intent-
aware optimizations, such as providing design houses the ability 
to provide information to semiconductor foundries on shapes 
that are part of critical, timing-sensitive nets, without providing 
detailed timing information. The data model should ideally also 
provide the ability to store certain types of derived data and 
annotate shapes with outputs of analysis tools like lithography 
simulations and Chemical-Mechanical-Polishing topography 
simulations. Hierarchical representations, along with abilities to 
group and cluster based on selections of stored features, will 
enable efficiencies in ML training and inference flows. The data 
model should also preserve the ability for APIs to perform 
design location-aware grouping and sampling. 

D. Structured Classification Methodology 
Descriptions of current data classifications in different 

design areas suggest a methodology for bridging the gap 
between classification and ML data preparation and labeling by 
defining common standards. When there is interest in an AI/ML 
application, subject matter experts and stakeholders would meet 
to define the input design and derived data which needs 
structured classification, for example to and from multiple EDA 
tools and/or multiple semiconductor technologies. They would 
also define how the data would be referenced, for example 
through a common API, and the data transformations needed for 
AI/ML. The standard for this area can be published for industry 
use, preferably with a prototype demonstration flow. This 
standard can then be replicated and modified for new AI/ML 
applications. As described in Section II-A, Fig. 4, this standard 
for AI/ML data could be built on top of an existing design 
database, for example Si2 OpenAccess. 

VIII. CONCLUSIONS 
In order to accelerate AI/ML applications to EDA, a 

collaborative and coordinated approach is needed. A 
prerequisite for this approach is establishing the best process for 
organizing, leveraging and sharing data, since such data are the 
foundation on which AI/ML applications are built. Furthermore, 
from Si2 industry survey results, there is a gap in the availability 
and organization for AI/ML data in EDA. A common data 
model would address the data organization gap for chip 
developers, EDA tool developers, IP providers and researchers 
by first supporting the high interest EDA areas, design data and 
derived data.  

An ideal data model for EDA applications is organized 
around the following components:  Objects, composability and 
inheritance, relationships, operations, design versus derived 
data, APIs, and a means for obfuscation for sensitive IP 

Further specialization is required in the space of analog 
design where the following signal vectors are highly relevant for 
design capture:  

1) Analog simulation time-series data: data obtained 
directly from SPICE simulator or after post-processing as 
performance metrics. 

2) Electrical design parameters: the parameters used 
during a manual and typical analog design. 

3) Sizes and biases: the inputs to SPICE-like simulators. 
4) Small-signal parameters: parameters arising from linear 

analysis performed during linearization by evaluating compact 
models such as BSIM and PSP. 

5) Performance models: models used to evaluate linear and 
nonlinear performances. 

 
In the space of digital design, one needs a data model to 

answer questions at the intersection of logic, placement, wiring, 
timing, power, and noise, among other variables.  In particular, 
what is still needed, is an agreed-upon standard for efficient 
storage of derived data such as timing, noise, power in an offline 
data model, as well as a means to link derived data back to the 
design data objects. This superset of design data and derived 
data, all tightly coupled and linked, gives rise to a unified 
persistent data model enabling AI/ML in EDA. 

A design flow usually involves several EDA tools generating 
a great deal of data at each step, some of which is redundant or 
duplicate data. AI/ML-based applications in EDA may not need 
all of the data generated at each step of the design flow. 
Additionally, some design data may be proprietary to the 
specific EDA vendor or the design house; therefore, it is 
important for the data model to support mechanisms for 
extracting derived data from the existing design data and/or 
analysis data. These mechanisms can involve processes 
including Data Relevance, Data Cleaning, Data Transformation, 
Enabling Extraction of Relevant Data, and whether data is 
Above versus Below the Line. 

A complete design flow based on efficient design and data 
models is crucial for the IP Protection and Management of 
Innovation (disruptive or Breakthrough) within a corporate 
organization. We define three levels of sensitivity for 
obfuscation of sensitive IP, each with different handling 
guidelines: shareable data, partially sharable data, and 
confidential data. 

 The common data model requirements detailed in this work 
define an infrastructure for common AI/ML features with EDA 
proprietary extensions. EDA suppliers would focus on writing 
to a standard AI/ML interface and provide prepackaged AI/ML 
configurations for end users. Industry standard flows and 
engines would be leveraged, and the end user would own their 
analysis results. Si2 OpenAccess could be a building block for a 
complete AI/ML in EDA system. These subject matter experts 
agree that a standard, common method for classification and 
structure of machine learning training and inference data for 
interoperability is critical to enable and accelerate the use of 
artificial intelligence and machine learning in semiconductor 
electronic design automation. 
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