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Abstract 
 
Researchers at chip design companies, foundries, EDA tool suppliers, academic 
institutions, and national laboratories cannot investigate novel Machine Learning 
Algorithms without organized volumes of trusted, suitably labeled, non-proprietary 
design data for training. Access to quality data is fundamental to advancements in 
machine learning. 
 
Undoubtedly, progress is being made in applying ML to EDA; however, big-payoff 
concepts require access to big data sets. The companies best positioned to make gains in 
this area are chipmakers with internal EDA and semiconductor development capabilities, 
with a reservoir of archived IC design and manufacturing data. Even then, processed 
data—data describing the human and tool actions that transpired at each process step, 
which are key to enable the next level of intelligent optimization—have often been left 
uncaptured, or, at least, uncaptured in a format usable to empower ML. 
 
A comprehensive solution to the data access and formatting challenges that collectively 
supports competitive, university, and company research and development, is sorely 
needed. 
 
This work presents motivation, requirements, and essential components for a 
collaborative, secure learning API for EDA, based on recent work by the Silicon 
Integration Initiative AI/ML in EDA Special Interest Group. Stakeholder authors, 
including chip design companies, foundries, academic institutions, and national 
laboratories, present their problem statements for a collaborative secure learning API 
through use case scenarios specifically targeting the ML training data gap. 
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1. Introduction 

Recent surveys, such as the 2020 Si2 AI/ML in EDA Survey, highlight that the current 
status quo, involving highly siloed development with proprietary formats, creates 
significant obstacles to collaboration in the field of EDA [1]. These difficulties largely 
arise from proprietary hurdles. Key issues include the lack of a standard means for 
partners to exchange processed data, the duplication of efforts needed to avoid prohibited 
exchanges of data, and access to metadata from an EDA toolset. The term processed data 
refers to any data derived from proprietary data, e.g., path delays for a circuit that have 
been generated using gate delays from a proprietary timing library. In a recent Silicon 
Integration Initiative (Si2) whitepaper, experts representing chip design companies, 
foundries, academic institutions, and national laboratories provide perspectives on the 
need for a holistic API to present processed data pertaining to IC design. We refer to this 
as a collaborative secure learning API.   

A recent Semiconductor Engineering article presents the challenges for ML in EDA, and 
questions whether EDA is an appropriate area for ML [2]. Availability of sufficient high-
quality data and the difficulty in sharing data from EDA tools are chief among the 
author’s concerns. Obstacles to data collaboration include unease about data security and 
privacy, the potential for back-tracing original data, even after obfuscation, the cost of 
API and security implementation versus return on investment, and a desire to keep ML 
data and solutions proprietary. 

Section 2 describes field publications providing motivation and building blocks for a 
collaborative secure learning API. In Section 3, stakeholder authors from chip design 
companies, foundries, academic institutions, and national laboratories present their 
problem statements for a collaborative secure learning API through use case scenarios. 
Section 4 summarizes common problems in the semiconductor industry that can be 
addressed through secure data exchange, and common requirements for a collaborative 
secure learning API. This is followed by Section 5’s discussion of example paths to 
address these challenges and requirements through the collaborative secure learning API, 
as well as advantages and disadvantages of certain resources which may address 
stakeholder challenges in the absence of an API. Section 6 presents the authors’ 
conclusions.  

 

2. Background 

The motivation for a standard, common methodology for classification and structure of 
machine learning training and inference data for interoperability has been described in “A 
Collaborative Data Model for AI/ML in EDA,” a white paper published by the Si2 
AI/ML in EDA Special Interest Group with authors from eleven companies [3]. With 
examples of both analog and digital use cases, this paper highlights ways in which 
processed data from a common API can be optimized for machine learning training, 
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including the processes of determining data relevance, data cleaning, and data 
transformation. 

Building blocks for a standard processed data API currently exist in open-source EDA 
endeavors such as the OpenROAD project. The OpenROAD “Safe Names” Conventions 
for the RTL-to-GDS space outline a format to define names for API input and output, 
without using proprietary or trademarked EDA tool names, by using 
verb+object+modifier [4]. OpenROAD defines metric-naming conventions based on flow 
stage names, run-level and tool metric-level nouns, and modifiers which can be recorded 
using Python and JSON [5]. These metrics can be used for ML training data. The IEEE 
CEDA Robust Design Flow (RDF) calibration data focuses on open-source interfaces to 
Logic Synthesis, Static Timing Analysis, and Detailed Routing intersections where tools 
can be freely swapped [6]. 

Security and privacy methods for EDA processed data are critical to enabling sufficient 
data-sharing to power ML methods such as neural networks. State-of-the-art 
cybersecurity applied to EDA processed data can assuage the concerns of potential 
collaborators. These methods include differential privacy that can prevent recreating 
input data from trained models [7], deterministic privacy that constrains database access 
at different security levels [8], and federated learning that enables secure cross-functional 
collaboration [9]. 

 

3. Use Case Problem Statements 
 
A collaborative secure learning platform for EDA would contribute significantly to 
solving many pressing industry problems. Here, stakeholder authors present desired use-
cases for such a collaborative ML platform as a set of tasks to be performed. The tasks 
are organized by stakeholder category: chip design companies, foundries, academic 
institutions, and national laboratories.  
 
Chip Design 
 
When assembling a design for fabrication, a commercial chip design organization must 
execute a wide range of EDA design flows, from synthesis to physical design and 
verification, using multiple software tools and logical and physical IP obtained from 
many partners. These flows can be complex, and are often unpredictable. Machine 
learning is already used in many tools and flows but could bring great efficiency gains to 
many more. When developing these flows, a chip design organization may wish to do the 
following:  

• Collaborate with an external partner to develop and deploy an ML model training 
flow. Developing a shared model training flow requires the sharing of sample data 
in a partially anonymized fashion. This data is used for benchmarking, flow 
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tuning, and training of ML models, and it must be both sent and received in a 
secure manner. 

• Validate that an external partner's EDA methodology is working as expected. 
Such validation would involve running a portion of a partner’s EDA 
methodology, perhaps on a public cloud, in a way that protects both design data 
and processed results. This may include both training and inferencing. 

• Validate that IP procured from a provider is being analyzed properly within a 
design-flow. Validating IP would involve obtaining sample processed data (e.g, 
timing, power, or noise results) in order to validate that the IP in question is being 
analyzed properly within a particular design methodology. 

Unfortunately, it is difficult for commercial chip design companies to fully collaborate as 
described while protecting proprietary design content. A collaborative secure learning 
API would provide a means of identifying and protecting sensitive information while 
enabling straightforward access to non-sensitive data.     

Foundry 

Thanks to the success of ML in computer vision-related applications, foundries are 
among the early adopters of machine learning techniques to improve lithography and 
mask synthesis. ML-based lithography hot spot prediction is currently used to improve 
yield and design for manufacturability (DFM), while ML-based optical proximity 
correction and sub-resolution assist feature insertion are used to optimize mask synthesis 
efficiency. Foundries can claim some early victories in the lithography and mask 
synthesis areas, but machine learning is far from reaching its potential in aiding process 
development. Key collaborative ML-based tasks to unleash foundry potential include the 
following:  

• Simplify and accelerate Design Technology Co-Optimization (DTCO). Foundries 
are relying more and more on DTCO to drive the Performance, Power, Area, and 
Cost/Yield (PPAC) gains from one process generation to the next. DTCO now 
accounts for more than half of those gains for advanced process nodes. A fast 
loop from design rule definition to lithography DFM impact and design PPAC 
impact is required for modern foundry process development. Pure-play foundries, 
in particular, must exchange benchmark designs with customers in a secure 
manner in order to optimize the different types of designs (high performance, low 
power, cost sensitive, logic centric or memory centric). All this requires a secure 
way to access design data and establish a common “design dataset” for 
benchmarking. Similar situations arise for machine learning benchmarks between 
different AI hardware accelerators. Hardware vendors had their own benchmark 
models and published results based on non-standard benchmarking models until 
this was addressed by the MLperf benchmark set, which provided a common 
reference against which to compare the offerings from different machine learning 
hardware acceleration solutions. For DTCO, establishing a “public benchmark 
design dataset” to calibrate and benchmark all foundry PPAC claims/entitlements 



 

 7 

                

is required. A secure and collaborative learning mechanism to build this dataset 
will help to accelerate this work. 

• Enable early-phase process development for advanced technologies. In the early 
phases of development, foundries use synthetic patterns (e.g., a 6x6 squish 
pattern) to explore the range of possible patterns to fabricate and drive yield 
learning; however, patterning for advanced nodes will require a significantly 
larger matrix (e.g., a 16x16 squish matrix pattern) to capture the essential 
transition windows. A 6x6 squish matrix represents a pattern space topology 
greater than 68 billion patterns and 16x16 matrix makes the overall pattern space 
intractable. Fig. 1 illustrates the difficulty of covering the pattern space using the 
random-synthetic-pattern approach. Red dots in the figure represent the layout 
patterns extracted from the design database that are not covered, and the synthetic 
patterns generated are potentially areas of future yield surprises. To solve this 
problem, foundries must obtain early sample designs to identify high-probability 
patterns from the sea of possible patterns. 

• Reduce the cost of EDA tool-chain integration. In order for ML to resolve the first 
two issues above, foundries must overcome the formidable tasks of exporting the 
design database from the EDA tool chain, performing inference on a custom-
trained ML model, fixing any reported issues within and without the EDA tool 
chain, and importing the results back into the EDA tool chain to complete the 
flow. Fig. 2 shows an example of an ML-based hotspot prediction and fixing 
training and inference process. During the inference process, EDA tool processed 
data is exported to an external ML model input data feature set. After the ML 
inference and hotspot fixing, data is imported into the EDA toolset to complete 
the process. The overhead cost of database export/import is likely to nullify much 
of the efficiency gains from ML without an efficient API. 
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Fig. 1 – Comparison of the pattern spaces of an APR layout  
to various synthetic pattern spaces [10] 

 

 

Fig. 2 – ML training Process, ML inference Process [11] 

Academia 

Because academic researchers often work to solve the problems of both chip design 
organizations and foundries, they are assumed to have similar use-cases to the ones 
already presented. Additionally, academic researchers are often free to explore new 
algorithms or techniques that are considered too risky for commercial entities. ML 
algorithms hold great promise and present many opportunities for academic research; 
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however, academics are also required to publish their work and present convincing 
evidence of their results to sponsors and publication venues. In the process of performing 
these tasks, an academic researcher may wish to do the following: 

• Experiment with new algorithms using realistic data. Academic researchers often 
demonstrate new models or algorithms with synthetic data, which can be easily 
dismissed by industry researchers as unrealistic. Industry partners may attempt to 
obtain access to proprietary data for their academic partners but find themselves 
unable to satisfy their company’s data sharing safeguards. As a result, the 
technology transfer from academia to industry is often severely limited. 

• Publish work without violating license agreements. In the process of their 
investigations, academic researchers often need to evaluate the quality of one 
model or training algorithm relative to another, duplicating the results of another 
researcher to ensure proper understanding of the technology. When publishing 
their work, they must ensure that they do not unintentionally leak confidential 
information; this can be especially difficult if the new model or algorithm create 
data derived from a tool or library with licensing that prohibits benchmarking. 
Researchers inherently want to release their subject data so that the results of their 
work can be duplicated and expanded. If the results can be used to reverse-
engineer a tool’s performance, then the EDA company could revoke the 
researcher’s license for the tool, and potentially sue the university. 

National Laboratories 

National laboratories often design circuits and systems that have national security 
implications. These systems have to perform to their specifications in harsh, sometimes 
radiation-heavy environments; therefore, national laboratories construct their own, 
internal models for electrical component behavior in such environments, as well as 
unique design flows for analyzing, simulating, verifying, and validating their systems 
under extreme conditions. Such internal models and design flows typically cannot be 
shared outside of the laboratory (including with EDA vendors, academia, or other chip 
design houses) due to security concerns. In the process of designing these circuits, 
national laboratories may wish to do the following: 

• Use the latest ML-enabled EDA tools without violating government security 
protocols. National laboratories stand to benefit from the performance 
improvements that accompany each new technology node, as well as from the 
latest EDA techniques and algorithms developed by researchers in academia or at 
chip design companies, which leverage ML to solve EDA problems commonly 
encountered in the newest technologies (e.g. timing analysis, parasitic extraction 
and layout, characterization of noise margins and variability, etc.). Under the 
status quo, security concerns often prevent national laboratories from taking 
advantage of these improvements.  

• Share non-sensitive ML research findings with the EDA community. Not all 
securely developed models and design flows are security sensitive. As a taxpayer-
funded entity, national laboratories wish to offer their non-sensitive ML/EDA 
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research findings to the rest of the EDA community; however, extracting these 
new algorithms, models, tools, and techniques from security-sensitive data is 
often a difficult task. 

ML will drive the future of EDA, and, unlike traditional EDA approaches, ML-based 
tools and techniques tend to vastly improve with increased availability of both primary 
and processed data. It is therefore in the interest of the national labs to maximize 
collaboration on ML initiatives with academia and industry participants, while respecting 
their own security constraints and the confidentiality/licensing/trade-secret concerns of 
their would-be collaborators.  

 
4. Summary of Common API Requirements 
 
From a commercial chip-design standpoint, a collaborative secure learning platform 
would provide a standard means of sharing the processed data needed to address IP 
protection, including the various levels of security required by the myriad application 
domains. This IP protection component is vital to enabling collaboration. 

Furthermore, given the highly integrated nature of commercial-grade EDA flows, linking 
processed data to underlying physical structures, as well as managing across multiple 
levels of hierarchy, is of critical importance, particularly for big data analytics and 
machine-learning. The digital implementation flow of a commercial chip design house, 
for example, often includes a mix of homegrown and commercial tools. Hierarchical 
design methodologies have evolved to group large designs into smaller sub-units, which 
require careful integration of the implementation with analysis results to ensure the 
system functions properly. As a result, a holistic framework for collaboration (i.e., one 
that supports hierarchy, as well as linking multiple domains of processed data back to the 
appropriate design content) is needed to address the industry demand to operate 
efficiently with multiple partners in a variety of environments.  

Additionally, there are multiple opportunities to analyze the physical design of digital ICs 
during iterations of the design process. These include not only evaluation of the results, 
but also identifying the particular inputs that lead to the results and, ultimately, driving 
improvements [12]. A viable analysis system will allow queries at the intersections of 
logic, placement, wiring, timing, power, noise, etc. A tool-agnostic, efficient API layer 
would also need offline query capability into a known data model, as well as capacity for 
in-process queries. 
 
Fig. 3 indicates that existing models, such as Si2’s OpenAccess database, can be used to 
store design data. A processed (or derived) data model for the output of timing, noise, or 
power analysis can be linked to the design data through a unified persistent data model to 
enable ML training. This elevates the processed data to primary data objects, as opposed 
to properties which require connection to a design data object, as illustrated in Fig. 4. 
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Fig. 3 – High-level representation of a Unified Persistent Data Model for enabling AI/ML in EDA [3] 

 

 

Fig. 4 – Processed data, such as timing, as a first-class citizen of a Unified Persistent Data Model [3] 

Multiple points in the implementation flow can have API connections to the design and 
processed data, referred to as derived data (DD) in Fig. 5. This unified data model should 
be designed for minimal impact to implementation run time. 
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Fig. 5 – Multiple API connections to implementation flow [3] 

An industry-standard secure API for processed output data would provide important 
infrastructure to enable AI and ML training and inference from data produced by a 
variety of EDA tools. This API could replace separate data translation and tagging 
programs to reduce the turnaround time of providing structured and properly labeled 
datasets, enabling innovation through secure collaboration, as shown in Fig. 6. 

 

Fig. 6 – Secure Processed Data API 

5. Discussion 
 
Given the stakeholder use cases and the requirements for a collaborative secure learning 
API, this section describes possible scenarios for an API and the different levels of data 
security needed to address these challenges. Until a collaborative secure learning API is 
complete, design teams will continue utilizing other approaches to obtaining ML training 
data. Potential training applications of open-source datasets and synthetic data generation 
are described here. 

 

API Layer

AI/ML and Processed Data Model

EDA Tools 
Design Creation | Quality Checker | 
AI/ML Engine | Internal Data Model

Design Data in OpenAccess

Encapsulated Private Data
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EDA Built-in API for Customer ML Model 
 
Design companies can customize ML model and EDA tool chains to interact with each 
other in a variety of ways. One option is ML model integration in the EDA toolset, which 
would provide a native API to access the processed data within the EDA toolset. Without 
the native API to the EDA tool chain, the user exports the data from the EDA tool chain, 
trains the model, performs inference, then imports the data back to the EDA tool chain 
and completes the remaining steps. 

There are established native APIs for designers to access, but these are often limited to 
specific application areas. One next step would be to expand the native API access to 
other design application and signoff databases, and to allow users to run their ML model 
in conjunction with the database residing in the EDA tool chain. 

 

 
Fig. 7a-c – Three possible API implementations 

Fig. 7a represents a current machine learning interaction model with an EDA tool chain. 
This model requires the database to be exported from the current EDA toolset and the 
machine learning inference to be conducted outside of the EDA tool chain. 

Fig. 7b shows an API implementation that supports external ML models, in which the 
ML model could access the data residing in the EDA toolset and perform inference 
through the EDA ML backend. EDA toolsets can then use the ML inference results to 
perform the necessary actions to correct and/or modify the database. One typical 
implementation would be ML-based hotspot prediction (for EM/RV, DFM hotspot, 
congestion hotspot, etc.). EDA controlled software would query the ML model based on 
the current database or implementation and perform the necessary corrections. The 
external ML model would then be called through the API and respond to requests for 
action. Under this model, the API could act as a typical ML API backend (e.g., 
TensorFlow, PyTorch). 

The structure outlined in Fig. 7c would allow the ML model to control the EDA software, 
based on the inference result, to perform necessary corrections. The ML model would 
also control the overall flow of the EDA tool setting to obtain the best performance. This 
reinforcement learning-based ML model would then query the implementation results 
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based on this setting, and output optimal tool settings for the next run based on the given 
constraints. 

 

Levels of Data Security  

Distributed learning and database security for semiconductor design are areas of growing 
interest and concern. Many of the models envisioned for ML in EDA require training 
data samples and features that are scattered among different organizations. Recent 
research in distributed learning techniques could allow adversarial companies to train an 
ML model collaboratively, while protecting trade secrets that competitors may attempt to 
infer from the training data. Differential privacy can guarantee that secret information 
cannot be probabilistically inferred from the shared information, and is considered the 
“gold standard” for privacy protection [13]. The federated learning algorithm allows 
collaborative ML model training without moving the training data across organizational 
boundaries [9]; however, models trained by FL and other learning paradigms can leak 
private training information, leading to possibilities of training data recovery [14].  

Differentially private ML approaches rely on the ability to “hide” the private information 
within the shared training gradients, which may be too risky for some semiconductor 
companies to consider; these techniques may not always be able to prevent parties from 
leaking trade secrets to their collaborators. An alternative approach is to publish training 
data in a secure database, with policies that restrict data accesses and apply inference 
control methods to determine whether information leakage is possible [15]. As the 
amount of sensitive information grows, mechanisms enabling private access to secure 
data must become more fine-grained and complex. These elaborate security policies pose 
a different kind of information leakage risk, as an adversarial user with incorrectly 
configured access could deterministically infer sensitive information. Whether privacy is 
guaranteed differentially, through inference control methods, or by some other means, it 
is paramount that the common API quantifies information leakage in order to enable 
collaborative learning.  

Differential privacy can be applied to the method of federated learning, which “aims at 
training a machine learning algorithm, for instance deep neural networks, on multiple 
local datasets contained in local nodes without explicitly exchanging data samples. The 
general principle consists of training local models on local data samples and 
exchanging parameters (e.g., the weights and biases of a deep neural network) between 
these local nodes at some frequency to generate a global model shared by all nodes” [16]. 

With federated learning, a design company need not disclose their own design data, and 
shares only the trained parameters with participating members. Likewise, an EDA 
company need not reveal their core algorithm, and could merely integrate all distributed 
parameters. To allow for this kind of collaboration, a federated learning infrastructure, a 
proper learning community membership structure, and data protection mechanisms must 
be developed and agreed-upon by the industry.  
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Open-Source Datasets 
 
Academia and industry alike are beginning to build open-source datasets for IC design, 
including open-source PDKs, APR benchmark datasets, hotspot detection public datasets, 
and digital and analog design datasets. Unfortunately, these available datasets are often: 

• Old, outdated, and lacking state-of-the-art design characteristics  

• Very small, particularly compared to successful computer vision public image 
datasets, for example 

• Not well-maintained, with no quality assurance on label accuracy and consistency 
(which leads to reduced training accuracy) 

Given these limitations, industry members should seek to build a high-quality public 
dataset for PDKs, digital design (logic centric design, interconnect centric design, etc.), 
analog design, and signoff datasets. Performance, power, area (PPA) benchmarks, in 
particular, would benefit from a common reference dataset. Beyond 28nm, process node 
naming has lost its meaning, since companies use their own marketing imagination to 
define the process node, causing confusion in the industry. There is no common 
terminology for PPA benchmarks. An open benchmark dataset would eliminate the 
confusion caused by the process node naming and allow for appropriate process 
comparisons against the same reference. 

Synthetic Data Generation 
 
Another way to produce data for machine learning is through generating synthetic data. 
Analog layout generators, such as the Berkeley Analog Generator, automatically generate 
varied layouts for the same function for different topologies, device sizes and routing 
width-spacing patterns [17]. Foundries often lack the tools for data generation, data 
augmentation and data management, and there is no standard native API to integrate data 
from foundries and design companies in a collaborative manner. Synthetic data 
generation can bridge the gap without requiring the design companies to risk leaking 
proprietary design data.  
 

6. Conclusions 
 
A common secure learning API will enable a smooth collaboration between fabless 
design companies and foundries to accelerate early phase technology development. In 
particular, a cross-EDA platform API that enables foundries to deliver their machine 
learning model-based design rule definition will minimize the gaps between design rule 
development, lithography recipe development, yield learning and design tool deployment. 
Other approaches, such as open design data sets, synthetic data generation tool 
development and federated learning, have great potential to further hasten machine 
learning adoption by foundries. 
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Academic researchers would benefit from a collaborative secure processed data API 
through the opportunity to demonstrate new models and algorithms on data from industry 
partners, enhancing technology transfer from academia to industry. The API can be used 
to create ML databases with EDA processed data content, which can be used for common 
research projects and for academic and industry metrics alike. 
 
National laboratories would drive the security parameters of the API, to the benefit of the 
EDA industry. Satisfying the security requirements of national laboratories to share data 
and non-security-sensitive ML research would enrich learning for the industry, and 
facilitate use of the latest ML-enabled EDA tools by national laboratories. 

An industry-standard secure API for processed output data would provide essential 
infrastructure for AI and ML training and inference from data produced by a variety of 
EDA tools. This API could replace separate data translation and tagging programs to 
reduce turnaround time for providing structured and properly labeled data sets, enabling 
innovation through secure collaboration. Given the highly integrated nature of 
commercial-grade EDA flows, linking processed data to underlying physical structures, 
as well as managing across multiple levels of hierarchy, is of critical importance, 
particularly for big data analytics and machine-learning; hence, a holistic framework for 
collaboration (i.e., one that supports hierarchy, as well as linking multiple domains of 
processed data back to the appropriate design content) is needed to address the industry 
demand to operate efficiently with multiple partners in a variety of environments.  
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