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1 Introduction

The r3_cmc model is a nonlinear 3-terminal resistor model that includes self-heating, velocity
saturation, statistical variations, and parasitic capacitances and currents. The core depletion pinch-
ing model formulation is for p-n junctions of diffused resistors, but it is also applicable for the
MOS behavior of polysilicon resistors. As p-n junction depletion pinching controls JFET device
behavior, the r3_cmc model is also applicable to JFETs.

NOTE: in this documentation parameters are set in Courier font, to distinguish them from other
quantities.

2 Usage

(NOTE: exact usage may be simulator dependent; e.g. whether the local temperature rise port for
self-heating is made available or not, and whether the initial instance key-letter “r” is required.)

r<instanceName> (<n1> <nc> <n2>) <modelName> <instanceParameters>
.model <modelName> r3_cmc <modelParameters>

n1 i2i1 n2
��� ���

dt

��� ��� ���

���

nc

��� ���
��� ���

��
�

Figure 1: r3 cmc Model Equivalent Network.
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3 Instance Parameters

Name Default Min. Max. Units Description
w 10−6 0.0 ∞ m design width of resistor body
l 10−6 0.0 ∞ m design length of resistor body

wd 0.0 0.0 ∞ m dogbone width (total; not per side)
a1 0.0 0.0 ∞ m2 area of port n1 partition
p1 0.0 0.0 ∞ m perimeter of port n1 partition
c1 0 0 ∞ number of contacts at n1 port
a2 0.0 0.0 ∞ m2 area of port n2 partition
p2 0.0 0.0 ∞ m perimeter of port n2 partition
c2 0 0 ∞ number of contacts at n2 port

trise 0.0 oC local temperature offset from ambient
(dtemp) (before self-heating)

sw noise 1 0 1 switch for including noise: 0=no and 1=yes
sw et 1 0 1 switch for self-heating: 0=exclude 1=include
sw lin 0 0 1 switch to force linearity: 0=no and 1=yes
sw mman 0 0 1 switch for mismatch analysis: 0=no and 1=yes
nsmm rsh 0.0 number of σ’s of local variation for rsh

nsmm w 0.0 number of σ’s of local variation for w
nsmm l 0.0 number of σ’s of local variation for l

l contact

webbing effect

wd = c1 � �� + (c1 − 1) � ����+2���� − w

resistor
body

ww+wd

����

����

��

a[12] = ����(���[12]) + ⁄w � l 2

p[12] = �����(���[12]) + l

Figure 2: Instance Parameter examples, note that the end region dogbone may be asymmetric.
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4 Special Model Parameters

Name Default Min. Max. Units Description
version model version (major model change)

subversion model subversion (minor model
change)

revision model revision (implementation up-
date)

level 1003 model level
type -1 -1 +1 resistor type: -1=n-body and +1=p-

body
scale 1.0 0.0 1.0 scale factor for instance geometries

shrink 0.0 0.0 100.0 % shrink percentage for instance geome-
tries

tmin -100.0 -250.0 27.0 oC minimum ambient temperature
tmax 500.0 27.0 1000.0 oC maximum ambient temperature

rthresh 0.001 0.0 ∞ Ω threshold to switch end resistance to
V=I*R form

imax 1.0 0.0 ∞ current at which to linearize diode cur-
rents

tnom 27.0 -250.0 1000.0 oC nominal (reference) temperature
lmin 0.0 0.0 ∞ µm minimum allowed drawn length
lmax 9.9×109 lmin ∞ µm maximum allowed drawn length
wmin 0.0 0.0 ∞ µm minimum allowed drawn width
wmax 9.9×109 wmin ∞ µm maximum allowed drawn width
jmax 100.0 0.0 ∞ A/µm maximum current density
vmax 9.9×109 0.0 ∞ V maximum voltage w.r.t. control port nc

tminclip -100.0 -250.0 27.0 oC clip minimum temperature
tmaxclip 500.0 27.0 1000.0 oC clip maximum temperature

c©Si2 2020 r3 cmc Model Documentation, release 1.1.0 5



5 Model Parameters

Name Default Min. Max. Units Description
rsh 100.0 0.0 ∞ Ω/� sheet resistance
xw 0.0 µm width offset (total)

nwxw 0.0 µm2 narrow width width offset correction co-
efficient

wexw 0.0 µm webbing effect width offset correction
coefficient (for dog-boned devices)

fdrw 1.0 0.0 ∞ µm finite doping width offset reference
width

fdxwinf 0.0 µm finite doping width offset width value
for wide devices

xl 0.0 µm length offset (total)
xlw 0.0 width dependence of length offset

dxlsat 0.0 µm additional length offset for velocity sat-
uration calculation

nst 1.0 0.1 5.0 subthreshold slope parameter
ats 0.0 V saturation smoothing parameter

(atsinf)
atsl 0.0 Vµm saturation smoothing parameter 1/l co-

efficient
dfinf 0.01 0.0001 10.0 /

√
V depletion factor for wide/long device

dfl 0.0 µm /
√

V depletion factor 1/l coefficient
dfw 0.0 µm /

√
V depletion factor 1/w coefficient

dfwl 0.0 µm2/
√

V depletion factor 1/(w*l) coefficient
sw dfgeo 1 0 1 switch for depletion factor geometry de-

pendence: 0=drawn and 1=effective
dp 2.0 0.1 ∞ V depletion potential

(dpinf)
dpl 0.0 (Vµm)dple depletion potential l dependence coeffi-

cient
dple 1.0 depletion potential l dependence expo-

nent
dpw 0.0 (Vµm)dpwe depletion potential w dependence coef-

ficient
dpwe 1.0 depletion potential w dependence expo-

nent
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Name Default Min. Max. Units Description
dpwl 0.0 (Vµm)dpwe+dple depletion potential wl dependence

coefficient
ecrit 4.0 0.02 1000.0 V/µm velocity saturation critical field
ecorn 0.4 0.01 ecrit V/µm velocity saturation corner field

sw vsatt 0 0 1 switch for vsat temperature effects:
0=none and 1=link with body resis-
tance

sw accpo 0 0 3 switch for pinch-off modeling
grpo 10−12 0 0.1 minimum body conductance in

pinch-off
du 0.02 0.0 1000.0 mobility reduction at ecorn
rc 0.0 0.0 ∞ Ω resistance per contact
rcw 0.0 0.0 ∞ Ωµm width adjustment for contact resis-

tance
fc 0.9 0.0 0.99 depletion capacitance linearization

factor
isa 0.0 0.0 ∞ A/µm2 diode saturation current per unit

area
na 1.0 0.0 ∞ ideality factor for isa
ca 0.0 0.0 ∞ F/µm2 fixed capacitance per unit area
cja 0.0 0.0 ∞ F/µm2 depletion capacitance per unit area
pa 0.75 0.0 ∞ V built-in potential for cja
ma 0.33 0.0 1.0 grading coefficient for cja
aja -0.5 V smoothing parameter for cja
isp 0.0 0.0 ∞ A/µm diode saturation current per unit

perimeter
np 1.0 0.0 ∞ ideality factor for isp
cp 0.0 0.0 ∞ F/µm fixed capacitance per unit perimeter
cjp 0.0 0.0 ∞ F/µm depletion capacitance per unit

perimeter
pp 0.75 0.0 ∞ V built-in potential for cjp
mp 0.33 0.0 1.0 grading coefficient for cjp
ajp -0.5 V smoothing parameter for cjp
vbv 0.0 0.0 ∞ V breakdown voltage
ibv 10−6 0.0 ∞ A current at breakdown
nbv 1.0 0.0 ∞ ideality factor for breakdown cur-

rent
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Name Default Min. Max. Units Description
kfn 0.0 0.0 ∞ flicker noise coefficient (unit depends on

afn)
afn 2.0 0.0 ∞ flicker noise current exponent
bfn 1.0 0.0 ∞ flicker noise 1/f exponent

sw fngeo 0 0 1 switch for flicker noise geometry calcula-
tion: 0=drawn 1=effective

ea 1.12 V activation voltage for diode temperature
dependence

xis 3.0 exponent for diode temperature depen-
dence

tc1 0.0 /K resistance linear TC
tc2 0.0 /K2 resistance quadratic TC
tc1l 0.0 µm/K resistance linear TC 1/l coefficient
tc2l 0.0 µm/K2 resistance quadratic TC 1/l coefficient
tc1w 0.0 µm/K resistance linear TC 1/w coefficient
tc2w 0.0 µm/K2 resistance quadratic TC 1/w coefficient
tc1wl 0.0 µm2 /K resistance linear TC 1/(wl) coefficient
tc2wl 0.0 µm2 /K2 resistance quadratic TC 1/(wl) coefficient
tc1rc 0.0 /K contact resistance linear TC
tc2rc 0.0 /K2 contact resistance quadratic TC
tc1dp 0.0 /K depletion potential linear TC
tc2dp 0.0 /K2 depletion potential quadratic TC
tc1kfn 0.0 /K flicker noise coefficient linear TC
tc1vbv 0.0 /K breakdown voltage linear TC
tc2vbv 0.0 /K2 breakdown voltage quadratic TC
tc1nbv 0.0 /K breakdown ideality factor linear TC
tegth 0.0 -∞ 0.0 thermal conductance temperature expo-

nent
gth0 106 0.0 ∞ W/K thermal conductance fixed component
gthp 0.0 0.0 ∞ W/Kµm thermal conductance perimeter compo-

nent
gtha 0.0 0.0 ∞ W/Kµm2 thermal conductance area component
gthc 0.0 0.0 ∞ W/K thermal conductance contact component
cth0 0.0 0.0 ∞ sW/K thermal capacitance fixed component
cthp 0.0 0.0 ∞ sW/Kµm thermal capacitance perimeter component
ctha 0.0 0.0 ∞ sW/Kµm2 thermal capacitance area component
cthc 0.0 0.0 ∞ sW/K thermal capacitance contact component

c©Si2 2020 r3 cmc Model Documentation, release 1.1.0 8



Name Default Min. Max. Units Description
nsig rsh 0.0 number of standard deviations of global varia-

tion for rsh
nsig w 0.0 number of standard deviations of global varia-

tion for w
nsig l 0.0 number of standard deviations of global varia-

tion for l
sig rsh 0.0 0.0 ∞ % global variation standard deviation for rsh

(relative)
sig w 0.0 0.0 ∞ µm global variation standard deviation for w (ab-

solute)
sig l 0.0 0.0 ∞ µm global variation standard deviation for l (ab-

solute)
smm rsh 0.0 0.0 ∞ % µm local variation standard deviation for rsh (rel-

ative)
smm w 0.0 0.0 ∞ µm1.5 local variation standard deviation for w (abso-

lute)
smm l 0.0 0.0 ∞ µm1.5 local variation standard deviation for l (abso-

lute)
sw mmgeo 0 0 1 switch for flicker noise geometry calculation:

0=drawn and 1=effective
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6 Geometry Dependence

Unless otherwise noted, all r3_cmcmodel quantities scale with the multiplicity factor $mfactor
as defined in the Verilog-A Language Reference Manual (LRM), version 2.4 [1].

The r3_cmc model includes several mechanisms for deviations of the effective electrical length
and width of a resistor from the drawn (design, or mask) values. The drawn length and width of
the resistor, in units of microns, are

l um = l · scale · (1− shrink/100) · 106, (1)
w um = w · scale · (1− shrink/100) · 106. (2)

Because subcircuit models for resistors can consist of multiple resistance sections connected in
series, it is desirable to be able to switch on and off the “end corrections” for length to facilitate
implementation of such multi-section models. This is the function of the c1 and c2 instance
parameters of the r3_cmc model. The effective length offset is

xleff = (xl + xlw/w um) ·
(
(c1 > 0) + (c2 > 0)

)
/2 (3)

(which is zero if neither end is contacted, xl+xlw/w um if both ends are contacted, and one half
of the latter if only one end is contacted). The effective electrical length, in microns, is

leff um = l um + xleff. (4)

For flexibility of separately fitting low bias resistance and velocity saturation, an additional offset
dxlsat is added to for calculation of the electric field used in the velocity saturation model (2).

The effective width offset includes the physical effect models derived in [2]. These comprise a
fixed offset for mask bias, lithography, and etching effects, and geometry dependent offsets for
LOCOS, the webbing effect, and the finite dopant source effect. The effective electrical width, in
microns, is

weff um =
w um + xw + (nwxw/w um) + fdxinf · (1− exp (−w um/fdrw))

1− wexw · wd um/(l um · w um)
(5)

where the width of the dogbone (see Fig. 2), for the webbing effect model, in units of microns, is

wd um = wd · scale · (1− shrink/100) · 106, (6)

The depletion factor depends on geometry as

df = dfinf +
dfw

W
+
dfl

L
+
dfwl

WL
(7)

where the width W and length L are effective geometries if sw geo = 1 and design geometries
otherwise (in units of micron).
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The depletion potential depends on geometry in version 1.1.0 as

dpi = dp ·
(

1 +
dpw

W dpwe

)
·
(

1 +
dpl

Ldple

)
·
(

1 +
dpwl

W dpweLdple

)
. (8)

(In version 1.0.0, dpi = dp.)

The zero-bias resistance, which factors in the zero-bias depletion pinching, is then

R0 = rsh · leff um
weff um

·
(

1.0− df
√
dpi

)
, gf = 1/R0. (9)

Although end effects, such as spreading resistance and contact resistance, are assumed to be mod-
eled via the xl parameter, the temperature coefficients of the end effects may differ from those of
the body of the resistor. Simple analysis shows that these different temperature coefficients can be
accounted for by introducing inverse length dependence to the temperature coefficients. A width
dependence of temperature coefficients of resistance is also included in the model, and version
1.1.0 also includes an area dependence. Therefore, in r3_cmc

T effC1 = tc1 +
tc1w

weff um
+

0.5 · [(c1 > 0) + (c2 > 0)]

leff um
·
(
tc1l +

tc1wl

weff um

)
, (10)

T effC2 = tc2 +
tc2w

weff um
+

0.5 · [(c1 > 0) + (c2 > 0)]

leff um
·
(
tc2l +

tc2wl

weff um

)
(11)

where the length dependence is switched on, off, or halved, depending on whether the resistor is
contacted at both ends, not contacted, or contacted at only one end, respectively. The dependence
of the temperature coefficients on whether a resistor is contacted or not enables consistent modeling
of temperature coefficients for single or multiple section models.

The thermal conductance and capacitance include area, perimeter, contact, and fixed components.
Asymptotically for a large area device, the heat flow is perpendicular to the plane of heat genera-
tion in the resistor, and the heat energy stored in a device depends on its volume, hence the area
dependent component. For a long resistor, as it becomes narrower more of the heat flow is con-
ducted by a “fringe” path at the edges of the device, hence the perimeter dependent component. As
both length and width decrease, the thermal conditions in the device asymptotically approach that
of a point source in an infinite medium, hence the fixed component. Contacts conduct heat flow,
hence the contact component. The thermal conductance and capacitance are therefore

gTH = gth0 + gthp · p um + gtha · a um2 + gthc · (c1 + c2) (12)
cTH = cth0 + cthp · p um + ctha · a um2 + cthc · (c1 + c2) (13)

where the area and perimeter are calculated as

a um2 = l um · w um (14)
p um = 2 · l um + [(c1 > 0) + (c2 > 0)] · w um. (15)

The calculated perimeter therefore depends on whether the ends are contacted or not. Note that
often the design dimensions of the body of a resistor differ from the overall dimensions of the de-
vice, for example if the design length is considered to be the unsalicided length of a poly resistor,
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the total resistor length will typically include silicided contact regions. So it is not readily apparent
what dimension should be used in calculation of the thermal conductance and capacitance. That
is why the design dimensions, rather than some effective dimensions (whose value is calculated to
best fit DC electrical data), are used. This turns out to be reasonable (with the exception that differ-
ences between the perimeter components along length and width dimensions are ignored), because
if there is some difference ∆ between design and effective dimensions for thermal conductance
modeling, then for a device contacted at both ends

gTH = gth0 + gthp · (2 · l um + 2 · w um + 4 ·∆) + gtha · (l um + ∆) (w um + ∆)

=
(
gth0 + 4 · gthp ·∆ + gtha ·∆2

)
+ (gthp + 0.5 · gtha ·∆) p um

+ gtha · a um2 (16)

therefore any difference between design and effective dimensions can be taken into account by
appropriate characterization of the fixed, perimeter, and area component parameters.

Because the “local” thermal conductance differs between the edge of a device and the center of
a device, it is higher at the edge because of “fringing” conductance, the temperature of a resistor
undergoing self-heating is not spatially uniform, but rather it is lower at the edges than in the
middle. This is not taken into account in the r3_cmc model.

The end resistances are calculated from the resistance per contact and the number of contacts
(parallel to the width dimension; adding contacts parallel to the length dimension, which can be
done for reliability purposes, does not alter the resistance much – unless the contact adjacent to the
resistor body fails),

Re1 =
rc + rcw/w um

c1
, Re2 =

rc + rcw/w um
c2

. (17)

The velocity saturation model includes geometry dependence in the bias dependent portion of the
model evaluation, as it is formulated in terms of the electric field E = V21/(leff um + dxlsat).

The areas and perimeters of the end region partitions, used in parasitic calculations, are, in units of
microns,

p1 um = p1 · scale · (1− shrink/100) · 106, (18)

a1 um = a1 ·
[
scale · (1− shrink/100) · 106

]2
, (19)

p2 um = p2 · scale · (1− shrink/100) · 106, (20)

and

a2 um = a2 ·
[
scale · (1− shrink/100) · 106

]2
. (21)

If the number of contacts is not known, it can be calculated (see Fig. 2). Let the contact width (in
the direction parallel to the resistor width) be wc, the minimum spacing from a contact to the edge
of the region it is in at the contact head of the resistor be wc2e, and the (minimum) spacing between
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contacts be wc2c. If (as in some older technologies) contacts can be scaled, then rc should be set
to be the resistance of a minimum width contact and

c[1, 2] =
max(w + wd, wc + 2 · wc2e)− 2 · wc2e

wc
(22)

and for technologies where the contact width is fixed (assuming the maximum possible number of
contacts are places)

c[1, 2] = int
[

max(w + wd, wc + 2 · wc2e)− 2 · wc2e + wc2c
wc + wc2c

]
. (23)
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7 Temperature Dependence

The zero-bias resistance R0 varies with temperature as

R0(T ) = R0 · tfac (24)

where R0 is the nominal value of the zero-bias resistance (9) at the nominal temperature tnom and
tfac is the resistor temperature factor, given by

tfac =
(

1 + T effC1 · dT + T effC2 · dT
2
)

(25)

where dT is the temperature difference (including self-heating) with respect to tnom, and T effC1

and T effC2 are first (linear) and second (quadratic) order effective temperature coefficients, from
(10) and (11), respectively. Smooth limiting of the resistance temperature factor tfac in (25) is
implemented to a minimum value of 0.01. The conductance factor in (40) is then

gf = 1/R0(T ). (26)

The depletion potential has a temperature dependence in version 1.1.0, given by

dp(T ) = dpi ·
(
1 + tc1dp · dT + tc2dp · dT 2

)
. (27)

The velocity saturation temperature dependence in version 1.1.0 is activated by the parameter
sw vsatt. If sw vsatt = 0, then there is no temperature dependence; this is the default for
compatibility reasons. If sw vsatt = 1, then the corner and critical fields for velocity saturation
are adjusted according to

ecorn(T ) = ecorn · rT xvsat · tfac (28)
ecrit(T ) = ecrit · rT xvsat · tfac (29)

where rT is the ratio of device to nominal temperature (in Kelvin), xvsat is a model parameter,
and tfac is the same temperature factor as the resistor body.

The end resistances vary with temperature as

Re[1,2](T ) = Re[1,2] ·
(
1 + tc1rc · dT + tc2rc · dT 2

)
(30)

and again the temperature coefficient in (30) is limited to a lower value of 0.01. The anomalous
increase in conductance with Vds for some p-body resistors is due to contact resistance self-heating
and negative temperature coefficients; this was pointed out in [3].

The parasitic diode saturation currents vary with temperature as

Isa(T ) = isa · rT xis/na · exp

(
−ea · 1− rT

na · φt

)
(31)

Isp(T ) = isp · rT xis/np · exp

(
−ea · 1− rT

np · φt

)
(32)

c©Si2 2020 r3 cmc Model Documentation, release 1.1.0 14



where φt = kT/q is the thermal voltage. The temperature dependence of the junction built-in
potentials is

Pa(T ) = pa · rT − 3 · φt · ln(rT )− ea · (rT − 1) (33)
Pp(T ) = pp · rT − 3 · φt · ln(rT )− ea · (rT − 1) (34)

with a physically based modification to smoothly limit the potential to zero for high temperatures,
and not allow it to become negative. The area and perimeter junction zero-bias capacitance tem-
perature variations are

Cja = cja ·
(
pa

PaT

)ma

(35)

and

Cjp = cjp ·
(
pp

PpT

)mp

. (36)

The flicker noise coefficient varies with temperature as

kFN(T ) = kfn · (1 + tc1kfn · dT ) (37)

where kfn and tc1kfn are model parameters (and the resulting is clipped to zero as a lower
limit).

The breakdown voltage and ideality factor vary with temperature as

Vbv(T ) = vbv ·
(
1 + tc1vbv · dT + tc2vbv · dT 2

)
, (38)

nbv(T ) = nbv · (1 + tc1nbv · dT ) . (39)
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8 Bias Dependence of Resistor Body Current

The r3_cmc model includes three basic forms of bias dependence. First, from the depletion (p-
n junction or MOS) pinching of the conducting channel of the resistor. Second, from velocity
saturation. And third, from self-heating.

The basic p-n junction depletion pinching bias dependence comes from the analysis of [4], with
the simplification of [5] (which merges the vertical and lateral bias dependence into a single bias
dependent form with geometry dependent parameters). Further improvements are taken from [6],
including improved modeling of pinch-off and velocity saturation. The applicability of the same
general form of bias dependence for poly resistors, where the MOS depletion effect pinches the
resistor body, was shown in [7]. The fundamental form of the depletion pinching model is

Idepl = g · V21, g = gf ·
(

1− df ·
√
dp+ Vi

)
, Vi = V21 + 2 · V1c (40)

where V21 = V (i2) − V (i1) and V1c = V (i1) − V (nc). Here dp is the depletion potential, df
is the depletion factor, and gf is the conductance factor; these are determined from instance and
model parameters and temperature, as detailed in the previous sections.

The velocity saturation model is from [5], and is implemented as an effective mobility reduction
factor 1+rµ that divides the conductance factor in (40). The model for rµ is smooth and symmetric,
has value 0 when V21 = 0, and asymptotically approaches (E − ecorn)/ecrit for large field
E = V21/(leff um + dxlsat)

rµ =

√(
E − Ece
2 · ecrit

)2

+ due +

√(
E + Ece
2 · ecrit

)2

+ due −

√(
Ece
ecrit

)2

+ 4 · due (41)

(see Fig. 3) where Ece =
√
ecorn2 + (2 · du · ecrit)2 − 2du · ecrit and due = du · Ece/ecrit.

The V21 used in the above expressions is smoothly limited so as not to exceed a saturation voltage
Vsat, which is calculated as the V21 at which the output conductance becomes zero. To determine
Vsat, a slightly modified form of the velocity saturation model (41) is used (the asymptotic form
noted above), that allows closed form solution and guarantees that any imprecision in calculation
of Vsat is such that the output conductance at saturation is positive, so that there are no “wiggles”
around the transition to saturation. The smooth transition is implemented via [8]

V21,eff =
2V21 · Vsat√

(V21 − Vsat)2 + 4 · atsi +
√

(V21 + Vsat)
2 + 4 · atsi

(42)

where atsi = ats/(1 + atsl/leff um) controls the limiting. This limiting function differs from
those often used in compact MOSFET models; it preserves symmetry. The control voltage used is
also limited, to the pinch-off voltage

V1c,eff = Vpo−nst·φt ·ln
[
1+ exp

(
Vpo−V1c
nst · φt

)]
, Vpo =

1

2 · df 2
−0.5·dp, φt = kT/q. (43)
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Figure 3: rµ factor used in the velocity saturation model.

Pinch-off behavior is primarily of importance for JFETs, and four models, selectable via the
sw accpo switch, are available. The default is sw accpo = 0, which is backwards-compatible
with version 1.0.0. The next computationally simplest, and therefore fastest to simulate, limiting is
selected with sw accpo = 1, however this model only fairly crudely approximates the physically
expected 1 − exp(−V21/φt) variation of I21 with V21 in full pinch-off. Setting sw accpo = 2
selects a model that more accurately approximates that behavior, at the expense of increased com-
putation time, and sw accpo = 3 selects an even more accurate, but slightly more computation-
ally expensive, form. A minimum conductance is enforced in full pinch-off to avoid numerical
computation issues.

The self-heating affects the current through the temperature variation of the model parameters,
primarily the sheet resistance. The current flowing between ports n2 and n1 in Fig. 1 is then

I21 =
Idepl

1 + rµ
. (44)
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9 Bias Dependence of Parasitics

If there are no area or perimeter component of saturation current, e.g. for poly resistors,

Ip1 = Ip2 = 0. (45)

If there are area and/or perimeter components of saturation current, e.g. as for diffused resistors,
the parasitic diode currents are

Ip1 = p1 um · Isp(T ) ·
{

exp [Vc1/(np · φt)]− 1
}

+ a1 um2 · Isa(T ) ·
{

exp [Vc1/(na · φt)]− 1
}

+ gmin · Vc1 (46)

Ip2 = p2 um · Isp(T ) ·
{

exp [Vc2/(np · φt)]− 1
}

+ a2 um2 · Isa(T ) ·
{

exp [Vc2/(na · φt)]− 1
}

+ gmin · Vc2 (47)

where Vc1 = V (nc) − V (i1), Vc2 = V (nc) − V (i2), and gmin is a small conductance added
by some simulators to improve convergence. Note that, when sw accpo > 0, Vc1 and Vc2 are
limited to pinch-off by a smoothing equation. Each individual component of the diode currents is
linearized for forward biases greater than the voltage at which the component is imax.

The breakdown currents, which are added to each parasitic current, are

Ib1 = −ibv ·
(

exp {− [Vc1 + Vbv(T )] / [nbv(T ) · φt]} − exp {−Vbv(T )/ [nbv · (T )φt]}
)
, (48)

Ib2 = −ibv ·
(

exp {− [Vc2 + Vbv(T )] / [nbv(T ) · φt]} − exp {−Vbv(T )/ [nbv · (T )φt]}
)
, (49)

and each of these is linearized for reverse biases greater than the voltage as which the magnitude
of the current is imax.

The parasitic capacitances comprise a bias independent component (intended for poly resistor mod-
eling) and a bias dependent component (intended for diffused resistor modeling). The capacitances
are implemented as bias dependent charges, but the resulting capacitances are given here:

Cp1 = p1 um ·
{
cp +

Cjp(T )

[1−Vc1/Pp(T )]mp

}
+ a1 um2 ·

{
ca +

Cja(T )

[1−Vc1/Pa(T )]ma

}
(50)

Cp2 = p2 um ·
{
cp +

Cjp(T )

[1−Vc2/Pp(T )]mp

}
+ a2 um2 ·

{
ca +

Cja(T )

[1−Vc2/Pa(T )]ma

}
. (51)

The forward bias junction capacitance components are modified so that when the junction voltage
(Vc1 or Vc2) reaches fc multiplied by the associated built-in potential, the capacitance becomes
linear in voltage, to avoid the singularity at the built-in potential. If the smoothing parameters aja
and ajp are positive, then the transition from depletion to linear capacitance is done smoothly and
not abruptly.

The thermal resistance and capacitance for the self-heating model are linear. The thermal resistance
has a temperature dependence through the parameter tegth, but the thermal capacitance does not
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depend on temperature. The thermal power used for self-heating modeling is the sum of the powers
of all dissipative (non-storage) elements in the equivalent circuit; i.e. the resistor body, the two end
resistances, and two parasitic current sources.
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10 Noise

The noise model comprises two body components, a thermal (white) noise component and a flicker
(1/f) noise component, thermal noise components for each contact resistance, and short noise com-
ponents for each parasitic diode. These components are noise current spectral density (in A2/Hz)
that are implemented as a noise current sources in parallel with the associated element.

The thermal noise component of the resistor body is based on its DC conductance,

i2thermal,body = 4 · k · TK ·Geff (T ) (52)

where K is Boltzmann’s constant, TK is the device temperature (in Kelvin, including the effect of
self-heating), and is the effective conductance of the resistor (at the temperature ). Similarly, the
thermal noise of each end resistances is

i2thermal,end = 4 · k · TK/Re(T ). (53)

The flicker noise component is DC current dependent [9], and scales with geometry per the physical
restrictions in [10],

i2flicker,body = KFN(T ) ·
(
I21
W

)afn

· W
L
· 1

fbfn
(54)

where f is frequency (in Hz), afn and bfn are model parameters, KFN(T ) is the temperature
dependent flicker noise coefficient (37), I21 is the DC current in the resistor body (44), and W and
L are the resistor width and length, respectively, in units of micron (µm). If the switch parameter
for flicker noise geometry calculation sw fngeo is 0 (“false”) then and are design geometries,
w um and l um, respectively, else if it is 1 (“true”) then W and L are effective geometries, weff um
and leff um respectively.

The shot noise components are
i2shot,diode = 2 · q · Idiode (55)

for each parasitic diode, where Idiode is the current in the diode.

Note that if self-heating is included, then possibly there is a frequency dependence to the flicker
noise because of the thermal time constant. There is no data to verify this at present so a frequency
independent noise current spectral density is used.
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11 Operating Point Information

Name Units Description
v V voltage across resistor body

ibody A current through resistor body
power W dissipated power

leff um µm effective electrical length
weff um µm effective electrical width

r0 Ω zero-bias resistance
r dc Ω DC resistance (including bias dependence)
r ac Ω AC resistance (including bias dependence)
rth K/W thermal resistance
cth sW/K thermal capacitance

dt et K self-heating temperature rise
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12 Statistical Variation

The r3_cmc model includes both global (inter-die, correlated between individual devices) and
local (mismatch, uncorrelated between individual devices) variations. These can be added “on
top” of a core model using sub-circuits, however this can involve increased complexity in model
parameter files and increased computational overhead during simulation. Therefore, statistical
variation is “built-in” to the r3_cmcmodel, including instance parameters for control of mismatch
variation for individual devices.

Besides convenience and efficiency, the statistical variation modeling in r3_cmc naturally em-
bodies the geometry dependence of total variation in a device, which is not possible with statistical
modeling based on a geometry independent global variation and geometry dependent correlation
coefficients. And because it is based on independent statistical parameters for global variation and
instance specific local variation, it does not require generation of correlated samples for distribu-
tional (i.e. Monte Carlo-like) simulation; if correlations were used then N(N − 1)/2 of them are
required for each statistical parameter for each of devices.

Statistical variations are modeled in three parameters; the sheet resistance, the effective length
variation, and the effective width variation. These are considered as the primary physical process
parameters that determine the resistor behavior. At present there is no variation (global or local)
in other physical quantities such as contact resistance, other parasitics (zero-bias depletion capac-
itance for diffused resistors varies with doping), or the parameters that control the nonlinearity
of the model. If experimental data that show that linkage to more fundamental physical quanti-
ties, such as doping levels and layer thicknesses, is required to model correlations and statistical
variations, this will be added in the future.

The local variation of the effective width is controlled by line edge roughness in the length dimen-
sion; its variance is therefore inversely proportional to the resistor length L. The local variation
of the effective length is controlled by line edge roughness in the width dimension; its variance is
therefore inversely proportional to the resistor width W . The local variation of the sheet resistance
is controlled by random dopant fluctuations; its variance is therefore inversely proportional to the
area of the resistor, WL. For flexibility in fitting experimental data, the sw mmgeo flag allows the
controlling geometries W and L to be either drawn or effective (as calculated before the statistical
variations are applied, to avoid an implicit dependency that requires an iterative solution).

The total variance of a parameter is the sum of the variances of the global variance (which is
independent of geometry) and the local variance (which depends on geometry ~g, which can include
area, width, and length),

σ2
total = σ2

global + σ2
local (~g) . (56)

Note that this naturally embodies the geometry dependence of the overall variance of a particular
parameter. For statistical simulation, the perturbations of the global variation and the individual
instance variation are expected to be statistically independent. But “proper” statistical simulation
of a circuit requires inclusion of both global parameters and local parameters for every instance
of a device type in a circuit. This can cause the number of statistical parameters included in a
statistical simulation to increase proportionally with the number of devices in the circuit, with a
concomitant explosion in the number of (local) statistical parameters needed to be included for a
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“proper” analysis. This is, for brute force statistical simulation, clearly impractical.

The r3_cmc model therefore includes a mechanism for more efficiently accounting for the geom-
etry dependence of the overall variation. The sw mman switch is provided to allow specification
on an instance-by-instance basis of whether a device is being included in mismatch analysis. If
yes, then both global and local (instance specific) statistical variation parameters are expected to
be generated for each device instance, and the global and local variations are modeled separately.
If no, which is appropriate for devices for which local variation is not expected to affect circuit
performance, then the global variance for a device is adjusted to be the total variance for that de-
vice. This appropriately models the geometry dependent total variance for the device, with the
consequence that it makes the total variation completely correlated between all devices (that are
not selected for individual mismatch analysis); this will cause overestimation of the variation of
the circuit performances, i.e. the simulations from this will be pessimistic.

If mismatch analysis is selected, then the statistical variations are

weff um = weff umnom + nsig w · sig w +
nsmm w · smm w√

m · L
(57)

leff um = leff umnom + nsig l · sig l +
nsmm l · smm l√

m ·W
(58)

rsh = rshnom · exp

[
0.01 ·

(
nsig rsh · sig rsh +

nsmm rsh · smm rsh√
m ·WL

)]
(59)

where the nominal values are those defined in the section on geometry dependence and m is the
multiplicity factor of the instance. (The above expressions are used to update the effective ge-
ometries and resistance values, and all previous model equations actually use the values calculated
in (57) through (59), however for clarity of presentation and ease of interpretation the previous
equations are not cluttered with the statistical variations).

Note that the variations in effective length and width are absolute, and are additive, and that the
variation in sheet resistance is multiplicative. For small variations exp(x) ≈ (1+x), hence the rsh
variation is relative (it is more natural to think in terms of a % variation than an absolute variation).
For large variations, as can be seen in some resistors, statistical sampling can generate very small
or negative values of rsh, which are unphysical. Quantities with large variations typically exhibit
a log-normal distribution, and the exponential mapping in (59) transforms the normally distributed
basic statistical parameters into a log-normal distribution for rsh if the variation is large. Note
that strictly the unit “%” for the standard deviations of rsh is only for a small variation; if the
variation is large then the exponential transformation in (59) modifies this.

This approach allows statistical modeling via uncorrelated normal variables, yet can capture log-
normal distributions and correlations between parameters, via the dependencies on the fundamen-
tal process parameters that control the device behavior. Note that mismatch is modeled via inde-
pendent perturbations in individual devices, which is physically correct. To simulate mismatch
between two devices the mismatch instance parameters for both devices must be selected for sta-
tistical perturbation, and this easily extends to more than two devices, and implicitly accounts for
geometry differences between different devices. If mismatch is characterized from differential
measurements between two identically sized devices, then the measured standard deviations need
to be divided by

√
2 when mapped into the model parameters smm w, smm l, and smm rsh. If
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mismatch analysis is not selected, then the total variance in (56) is used as the global variance,

weff um = weff umnom + nsig w ·
√
sig w2 + smm w2/(m · L) (60)

leff um = leff umnom + nsig l ·
√
sig l2 + smm l2/(m ·W ) (61)

rsh = rshnom · exp
{

0.01 · nsig rsh ·
[
sig rsh2 + smm rsh2/(m ·W · L)

]}
. (62)

Note that the nsig parameters should be equated to global statistical variables in model files, as
they are model parameters, not instance parameters. These parameters then should vary with
case/corner and distributional simulations.
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13 Notes on Parameter Extraction

This section provides some information that can help in setting up parameter extraction algorithms.
After fairly extensive development and testing of difference possible approaches, the techniques
detailed in [11] have proven to be robust, and are summarized here. The overall process can be
broken down into the following steps:

• calculate the zero-bias conductance Gz(V1c) = 1/Rz(V1c) for each geometry, temperature,
and control port bias V1c, for V21 = 0

• from Gz(0) calculate basic resistance and temperature coefficients and their geometry de-
pendence

• calculate the depletion pinching parameters df and dp for each device from Gz(V1c)

• extract velocity saturation and thermal conductance parameters

• perform an overall global optimization

Note that the techniques for the first and third items are different for poly and diffused resistors.
Although the data are I21(V21, V1c) extraction should always be done based on G = I21/V21.

The procedures outlined here are for the core resistor DC current, characterization of parasitic
resistances, junction currents, and capacitances are not covered. It is fairly straightforward to
determine them using standard techniques.

Gz Calculation

It is not possible to directly calculate Gz because it is the value of I21/V21 at V21 = 0. It can
be difficult to determine Gz as limV21→0 I21/V21 because G becomes “noisy” for small values of
V21. A robust way to determine Gz is to fit an appropriate function to G(V21, V1c) for each V1c
individually and use that function to calculate Gz(V1c). The procedure is different for diffused and
poly resistors, but for both, data around V21 = 0 that are too “noisy” need to be filtered out.

For diffused resistors, serendipitously the effect of self-heating at low and moderateE is essentially
the same as the effect of velocity saturation. So, simply fit the function

G(V21, V1c) =
Gz(V1c) ·

(
1− df ·

√
dp+ V21 + 2 · V1c

)
(1 + rµ) ·

(
1− df ·

√
dp+ V1c

) (63)

(rµ is given by (41)) to the data, limited to where G is greater than 80% of its maximum value,
to avoid data that are more dependent on velocity saturation and/or self-heating than on depletion
pinching. Fig. 4 shows fits of (63) to data from a diffused resistor that is significantly affected by
all of depletion pinching, velocity saturation, and self-heating. The “noise” at low V21 is apparent,
as is the accuracy of the extrapolation. This approach is substantially more robust and accurate
than fitting a simple polynomial model.

For poly resistors, G(V21) is usually noisier than for diffused resistors because poly resistors are
significantly more linear than diffused resistors. However, because there are no pn-junctions to
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Figure 4: Gz extrapolation for a diffused resistor. |V1c| increases from top to bottom.

forward bias, V21 can be swept from negative to positive values, so interpolation, rather than ex-
trapolation, can be used to determineGz. The depletion pinching effect in poly resistors is so small
it can be closely approximated as linear, and self-heating gives a quadratic dependence of G on
field at low and moderate fields. In some poly resistors self-heating can be so pronounced that the
effect of T effC2 becomes noticeable, which adds a fourth order dependence. Therefore, the function

G(V21, V1c) = b0 + V21 · [b1 + V21 · (b2 + V 2
21 · b4)] (64)

should be used for poly resistors. If the contribution of the fourth order term is significant, reduce
the range of ±V21 over which the model is fitted; the goal is to accurately model the linear and
quadratic components about V21 = 0. Fig. 5 shows fits of (64) to data from a poly resistor that is
significantly affected by self-heating. The “noise” in the data, and the effectiveness of fitting the
model (64) to average out the noise and allow accurate interpolation of Gz, are apparent.

Basic Geometry and Temperature Dependence Calculation

The basic geometry dependence of Rz (typically taken to be at V1c = 0) is

Rz = rsh · l um + xl + xlw/w um
w um + xw + nwxw/w um

(65)
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Figure 5: Gz extrapolation for a poly resistor. The magnitude of V1c increases from top to bottom.

which after some simple manipulations gives

rsh−
(
Rz

l um

)
· xw−

(
Rz

l um · w um

)
· nwxw +

(
1

l um

)
· (rsh · xl)

+

(
1

l um · w um

)
· (rsh · xlw) =

(
Rz · w um

l um

)
.

(66)

Rz, l um, and w um are known, so this is a linear equation in five unknowns, rsh, xw, nwxw,
rsh · xl, and rsh · xlw. From five or more appropriate geometry devices, (66) can be solved to
give the basic parameters rsh, xw, nwxw, xl, and xlw that model the zero-bias resistance and its
geometry dependence.

From Rz(T ) the first and second order temperature coefficients can be calculated for each geome-
try. From four or more appropriate geometries, (10) and (11) can then be solved for the temperature
coefficient geometry dependence parameters.

Depletion Pinching Parameter Calculation

The depletion pinching modulation of the channel conductance depends on both V21 and V1c. Ve-
locity saturation and self-heating have no effect at V21 = 0, but for short resistors their effect is
noticeable even for low V21, see Figs. 4 and 5. In addition, because V1c affects depletion pinching
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at both ends of the channel but V21 affects only one end, V1c has twice as much depletion pinching
influence as V21. Depletion pinching parameters should therefore be determined from Gz(V1c).

For diffused resistors, (40) at V21 = 0 can be manipulated to give

−2 · V1c =

(
1

d2f
− dp

)
− 2

d2f · gf
·Gz(V1c) +

1

d2f · g2f
·Gz(V1c)

2 . (67)

A linear regression of Gz and G2
z on V1c for three or more values of V1c allows df and dp to be

calculated for each device geometry and temperature. Details, and an alternative approach that can
be used if data for only two V1c values are available or if it is not possible to extrapolateGz reliably,
are available in [11].

Poly resistors are highly linear, so Gz(V1c) provides only one piece of information, the linearity
coefficient [11]

l1 =

(
1

G

∂G

∂V1c
·
)
V21=V1c=0

=
df√
dp
· 1

1− df ·
√
dp
. (68)

Now, dp for a poly resistor is essentially [12] γ2/2 where γ is the body effect coefficient of the
resistor treated as an upside-down MOS transistor. Because poly resistors sit on thick oxides, to
minimize parasitic capacitance and maximize linearity, dp can be large, often many hundreds of
Volts. To fit the measured l1 this requries df to be large as well, but this can, and does, cause
numerical problems with the 1 − df

√
dp term. With l1 of (68) determined from the interpolated

Gz(V1c), dp can be calculated from [11]

dp =
εs

l1 · tb · C ′ox
(69)

where εs is the permittivity of silicon, tb is thickness of the polysilicon body of the resistor and C ′ox
is the capacitance per unit area of the oxide under the resistor. df then follows as

df =
1√

dp · [1 + 1/(l1 · dp)]
. (70)

For both diffused and poly resistors, fitting (8), (7), and (27) to the values of df and dp determined
for each device geometry and temperature gives the geometry and temperature parameters for df
and dp.

Velocity Saturation and Self-Heating Parameter Calculation

Poly resistors are not affected by velocity saturation, so set ecrit = 0 and ecorn = 0 to turn
velocity saturation modeling off. For diffused resistors, for n-body devices initialize ecrit =
4, ecorn = 0.4, and du = 0.02 (these are their default values), for p-body devices initialize
ecrit = 1.2, ecorn = 0.12, and du = 0.02. For diffused resistors of both body polarity
types, set sw vsatt = 1; this turns on substantially improved modeling of velocity saturation
over temperature, physically linked to resistance, i.e. mobility, variation with temperature (for
backward compatibility the default is to turn this off). For both diffused and poly resistors, initialize
gthc = 10−5.
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The most effective way to get initial estimates of self-heating parameters is from the rµ factor. For
both velocity saturation and self-heating, basic symmetry dictates that they are quadratic in field at
low field. From (40) and (44),

rµ = rvsµ + rshµ =
1

G(V21, V1c) ·Rz(V1c)

1− df
√
dp + V21 + 2 · V1c

1− df ·
√
dp

− 1 (71)

where the added superscripts vs and sh are for the velocity saturation and self-heating components,
respectively. It can be shown that

∂rµ
∂V 2

21

≈ 2 · du
E2
ce · (1 + 4 · du · ecrit/Ece)3/2

· 1

leff um2 +
T effC1

gTH ·Rz

(72)

where the first component is from velocity saturation and the second is from self-heating. rµ can
be determined from (71), all quantities on the right hand side are known (directly or from previ-
ous extraction steps). This removes the effect of depletion pinching from the data. From that, the
slope ∂rµ/∂V 2

21 can be determined, for diffused resistors the velocity saturation component can be
subtracted (it is zero for poly resistors), and gTH can be calculated. This should be done based on
long resistors, because that mazimizes the influence of self-heating compared to velocity satura-
tion. From gTH as a function of width the area and perimeter components of thermal conductance
can be calculated.

Final Optimization

The basic goal is to model the deviation from linearity (which is important for distortion model-
ing), so a final “polishing” of the intitial parameters extracted as outlined above should target that
quantity [13]. Because of local variation (mismatch) it can be difficult to merge data from different
devices for model parameter extraction. Measuring multiple sites and taking the median of the
data can help, particularly to determine the basic resistance and temperature parameters. But for
highly linear resistors, e.g. poly resistors, the difference between measurements and the model can
be dominated by local variation or inaccuracy in fitting Rz (which is already optimized as solution
of (66) gives a least-squares fit). Therefore, and this is extremely important, a final optimization
of the “shape” parameters of R3, the depletion pinching, self-heating, and (for diffused resistors)
velocity saturation, parameters, should scale the modeled conductance by the ratio Rmodel

z /Rmeas
z .

This removes any offset in modeling Rz so only optimizes fitting of the nonlinearity.

cTH can only be determined from the frequency dependence of the small-signal resistance, and
this is not commonly available as it requires s-parameter test structures and measurements. Data
from a wide variety of devices indicate that thermal time constants for integrated devices vary
from about 0.1 to 10.0 µs. with 1 µs being a typical value. If no s-parameter data are available, set
cTH = 10−6 · gTH .
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