
© Silicon Integration Initiative 2012 Page 1

CMC Standard Netlist Language and Model File
Format

Revision History

Release Date Authors Comments
-1.0.0 10/15/2008 S. Mertens DRAFT: assembling requirements
-1.0.1 11/12/2008 S. Mertens Adding examples and small changes after

phone conference
-1.0.2 11/25/2008 M. Kole and S.

Mertens
Adding more examples for Verilog-A and
redefining requirements after comments from
phone meeting

-1.0.3 12/09/2008 M. Kole and S.
Mertens

Minor changes to formatting and a few more
examples and redefining requirements after
comments from phone meeting.

-1.0.4 12/16/2008 S. Mertens Minor changes after feedback from face-to-face
meeting at CMC

-1.0.5 1/14/2009 S. Mertens Minor changes after phone meeting
-1.0.6 3/16/2009 S. Mertens Minor changes after phone meeting
-1.0.7 3/30/2009 S. Mertens Removed ADS examples after Q1 meeting
-1.0.8 4/7/2009 S. Mertens Changes after phone meeting
-1.0.9 4/23/2009 S. Mertens Changes after phone meeting
-1.0.10 4/29/2009 S. Mertens Adding examples
-1.0.11 5/8/2009 S. Mertens Added examples from Madan Nuttaki and

comments from meeting
-1.0.12 6/1/2009 S. Mertens Added example
-1.0.13 6/3/2009 M.Kole Added Verilog-A examples

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 2 of 83

Release Date Authors Comments
-1.0.14 9/28/2009 S. Mertens Removed Cadence-Spectre examples and

replaced with Berkeley-Spectre
-1.0.15 10/1/2009 S. Mertens Added examples using ADS syntax with help

from R. Poore
-1.0.16 10/7/2009 S. Mertens Removed inline and added example with multi-

line statement after phone meeting
-1.0.17 11/18/2009 S. Mertens Description of the language based on Berkeley-

Spectre/ADS
-1.0.18 12/14/2009 S. Mertens Made changes after face-to-face meeting
-1.0.19 1/13/2010 S. Mertens Made changes after phone meeting
-1.0.20 2/5/2010 S. Mertens Made changes after phone meeting
-1.0.21 2/25/2010 S. Mertens Made changes after phone meeting
-1.0.22 3/12/2010 S. Mertens Made changes after phone meeting
-1.0.23 4/7/2010 S. Mertens Made changes after phone meeting
-1.0.24 4/21/2010 S. Mertens Made changes after phone meeting
-1.0.25 5/14/2010 S. Mertens Made changes after phone meeting
-1.0.26 6/4/2010 S. Mertens Made changes after phone meeting
-1.0.27 7/7/2010 S. Mertens Made changes after phone meeting
-1.0.28 8/5/2010 S. Mertens Made changes after phone meeting
-1.0.29 10/8/2010 S. Mertens Made changes after phone meeting
-1.0.30 11/23/2010 S. Mertens Made changes after phone meeting
-1.0.31 12/1/2010 S. Mertens Preparing for evaluation
-1.1.0 12/13/2010 S. Mertens and B.

Peddenpohl
Fixing typos for evaluation

-1.1.1 3/15/2011 R. Poore and S.
Mertens

Editorial changes to improve clarity

-1.1.2 3/17/2011 R. Poore and S.
Mertens

Changes from Agilent feedback approved by
committee

-1.1.3 4/13/2011 S. Mertens Changes from Synopsys and Simucad feedback
and addition of more formal BNF formulation

-1.1.4 4/27/2011 S. Mertens Made changes after phone meeting
-1.1.5 5/4/2011 S. Mertens Made changes after phone meeting and

preparation for evaluation
-1.1.6 5/11/2011 S. Mertens Changed name of mextram according to wishes

of Prof. van der Toorn
-1.1.7 8/25/2011 S. Mertens Made changes to resolve negative comments

from first vote after phone meeting
-1.1.8 9/15/2011 S. Mertens More changes to resolve negative technical

comments
-1.1.9 9/29/2011 S. Mertens Still resolving negative technical comments –

preparing for final draft for evaluation
-1.1.10 10/26/2011 S. Mertens Preparing for final draft for evaluation
-1.1.11 11/2/2011 S. Mertens and M.

Nutakki
Preparing for final draft for evaluation

-1.1.12 11/17/2011 S. Mertens Preparing for final draft for evaluation

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 3 of 83

Release Date Authors Comments
-1.1.13 11/17/2011 S. Mertens Reviewing draft for evaluation
-1.1.14 11/17/2011 S. Mertens Finalizing draft for review
-1.1.15 11/17/2011 S. Mertens Fixed some small issues for next evaluation
0.0.0 4/5/2012 S. Mertens First approved standard

Review History

Revision Date Reviewers

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 4 of 83

The following people contributed to the creation, review and editing of this document

Samuel Mertens, Agilent, chair

Geoffrey Coram, Analog Devices, Inc.
Ryan Eatmon, Texas Instruments
Pascale Francis, National Semiconductor
Yoshiharu Furui, Silvaco
Ahmed Gamaleldin, Mentor Graphics
Ben Gu, Freescale
Steven Hamm, Freescale
Marq Kole, NXP
Colin McAndrew, Freescale
Shahriar Moinian, LSI
Madan Nutakki, IBM
Bob Peddenpohl, Cypress
Rick Poore, Agilent
Ahmed Ramadan, Mentor Graphics
Saibal Saha, Cadence
Haruyuki Taniguchi, Sony
Jushan Xie, Cadence
Sheldon Zhang, Synopsys
David Zweidinger, Texas Instruments

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 5 of 83

Table of Contents

Contents	

Contents	

1	
 INTRODUCTION ...7
2	
 REQUIREMENTS..7
3	
 COMMENTS/ITEMS TO BE RESOLVED:..8
4	
 LANGUAGE DESCRIPTION ..8

4.1	
 Language rules and definitions..9
4.1.1	
 Statements ..9
4.1.2	
 Comments ...10
4.1.3	
 Delimiters (field separators)...10
4.1.4	
 Case sensitivity..11
4.1.5	
 Strings ...11
4.1.6	
 Real numbers ..11
4.1.7	
 Integer numbers ..13
4.1.8	
 Boolean values ..13
4.1.9	
 Names ...13
4.1.10	
 Operators..14
4.1.11	
 Functions ..15
4.1.12	
 Expressions ..19
4.1.13	
 Vectors ...19
4.1.14	
 Variables...20
4.1.15	
 Parameter assignments..21
4.1.16	
 Terminals..22
4.1.17	
 User-defined models and primitive models ..24
4.1.18	
 C-preprocessor commands ..25
4.1.19	
 Interface with other languages ...29
4.1.20	
 User-generated warnings and errors..30
4.1.21	
 Files ..32
4.1.22	
 Including netlist...32
4.1.23	
 Namespace ..33
4.1.24	
 Encryption directives ..34

4.2	
 Circuit Description ...34
4.2.1	
 Instance statements ..34
4.2.2	
 Model statements ..35
4.2.3	
 Subcircuit definition ...38
4.2.4	
 Library definition ..41
4.2.5	
 Technologies ...42
4.2.6	
 Global nodes ...45
4.2.7	
 Paramset functionality ...46
4.2.8	
 Conditional instantation ...47

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 6 of 83

4.2.9	
 Environment parameters (Simulator options) ..47
4.2.10	
 Statistical analysis ..49

4.3	
 Hierarchy, scoping and referencing...52
4.3.1	
 Referencing outside of scope ..52
4.3.2	
 Hierarchical variables ..53
4.3.3	
 Scoping of variables ..55
4.3.4	
 Parallel devices ...56
4.3.5	
 Parameter scoping ..57
4.3.6	
 Signal Access Functions ...58

4.4	
 Model definitions..59
5	
 FUTURE WORK..59
6	
 REFERENCES ..61

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 7 of 83

1 Introduction

The CMC has set up a subcommittee to work on defining a standard netlist and model file language. This document contains
the requirements for the language and is a working draft for the language description. The language has been inspired by the
Berkeley Spectre language which was written by Ken Kundert [2] and by the ADS language [3].

2 Requirements

General requirements:

1. The language MUST be defined by a formal grammar.
2. The language MUST have unambiguous definitions of a model card, an instance of a model, a subcircuit, and a library.
3. The language MUST be case-sensitive. The standard SHOULD specify a warning mode, which would warn users when

names are being redefined which only vary in their capitalization.
4. The language MUST define the format for real numbers that is to be used.
5. The language MUST understand scale factors (defined in Appendix 1). Unit names and symbols MUST NOT be allowed

to be a part of the instance/model card.
6. The language SHOULD be able to use international characters sets. The language MUST define the allowed ASCII

characters that may be used in names, and provide an escaping mechanism for specifying other characters.
7. A mechanism to define global nodes MUST be part of the language. The language SHOULD specify how these nodes are

defined within a hierarchical structure.
8. The language MUST define legal characters and name spaces, including any length limitations. Reserved keywords that

can’t be used within their namespace for variable/instance/parameter/node names must be defined.
9. The characters that start a comment, both for a full line and for the remainder of the line MUST be defined in addition to

the characters that are used to continue multi-line statements, white space characters, tab spacing , embedded comments,
single line comments, block comments and extra spacing. The language SHOULD allow a minimum of such characters.

10. Basic models (R, L, C, mutual inductors, independent sources and controlled sources) and Verilog-A, API generated, or
other built-in models MUST be instantiated in a standardized way (Appendix 2).

11. The language MUST NOT contain positional arguments (except the terminal list may be position dependent).
12. The terminal list for a component MUST have a default order. This order MUST be able to be overridden by a specific

connectivity directive (recommendation: use the Verilog-A standard). A warning/parsing mechanism has to be defined if
the user does not connect the required nodes. A mechanism SHOULD be defined to allow the user to access internal
nodes for CMC standardized models.

13. The terminal list for a component MUST (optionally) be defined by delimiters (recommendation: use parentheses "()").
The committee will decide if this is optional or not after exploring examples.

14. A key letter MUST NOT be used to identify a component type. Full names (not level numbers) must be used (Appendix
2). If a model uses a parameter named LEVEL to distinguish between versions or model features, it is to be treated as a
model parameter, not as an identifying parameter to distinguish it from another model. If a new version of the model is
different enough from a previous model, the model developer will have the option to give it a different name to identify it.

15. The language MUST be able to provide one model card as a subset of another one, including remapping of the model
parameters to new names.

16. The model file format SHOULD have similar functionality as the Verilog-A paramset semantics - a lot of our technical
requirements are actually already satisfied by this format, such as chaining, automatic model selection (by overloading).

17. The language SHOULD allow conditional instantiation, also with scoping.
18. The model file format SHOULD allow multiple model sets to be used next to each other, for example allow the support of

BICMOS and carrier laminate technologies in one simulation environment. Different technology files SHOULD have a
different namespace. The language SHOULD have a mechanism to allow the user to switch between these namespaces
when generating a netlist. The language needs to clarify what happens when two model sets both define a variable called
"foobar" at the top level, or both want to set a global option or if more than one technology file is loaded which contains a
model with an identical name.

19. The language MUST allow a model to be defined within a subcircuit, and SHOULD allow to reference this model from
another subcircuit. The language SHOULD NOT allow a subcircuit to be defined within another subcircuit, unless more
evidence and examples can demonstrate the need for this.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 8 of 83

Limitations to the Standard in the first phase

20. The standard will NOT define analysis specific parameters for sources.

Parameters, functions, referencing, hierarchy and scoping requirements:

21. The language MUST support the notion of hierarchy.
22. The language MUST support the notion of scope. It MUST appropriately propagate variables defined at a higher

hierarchical level to lower hierarchical levels ("global" variables MUST be included in this). This is required for multi-
technology simulation.

23. The language MUST define netlist parameters, netlist functions and expressions. It MUST define the allowable data types
and the allowed operators (+ - * /,…) and functions (log10,ln, sin, …) MUST be defined.

24. The language MUST define the syntax and semantics of to refer to instances, models, parameters, nodes and branches,
including references at any level of hierarchy, in and out of the subcircuit definition. The language MUST support a
method to alias part of the hierarchy.

25. The language MUST define how to pass currents and voltages to all instances and subcircuits where this is needed (eg
Verilog-A). The currents could be defined by a probe or a source.

26. The language MUST be able to handle both global statistical variables, common across all components affected by a
specific process parameter, and mismatch statistical variables that affect individual instances of components.

27. The language MUST allow instance parameters to be evaluated inside of models. Especially, the multiplicity factor
MUST be explicitly available, it is required for proper specification of mismatch variation, and MUST be handled
hierarchically. To clarify, the multiplicity factor MUST be accessible and usable in expressions, where the simulator
properly expands any hierarchical definitions of multiplicity. For models where the implementation of the multiplicity
factor has caused confusion, the standard will provide a specification.

28. The language MUST be able to define statistical relations between parameters in specific statistical parameter sets. The
language MUST NOT define how the analysis is implemented.

Interaction with simulator/environment requirements:

29. The language MUST contain syntax to specify a limited set of simulator options, for example "tnom"," temperature"
or"scale." These MUST be able to be specified hierarchically. The language SHOULD specify how these simulator
options can be set or accessed within different technology files. The set MUST be defined within the standard (Appendix
3). Where possible the name of such parameter SHOULD correspond with its Verilog-A equivalent.

30. Encryption directives SHOULD be defined.
31. The language SHOULD have a structure that allows easy integration in source code documentation tools such as Doxygen.
32. The language SHOULD allow for a preprocessor to handle macros and conditionals. This would mean we have to define

preprocessor functionality. The language SHOULD not include scripting, although a mechanism MAY be defined for
access to names and values supplied from an exterior shell.

33. The language SHOULD allow parameters that exist only to help convergence or other simulator-specific behavior to be
labeled as such so a simulator would be able to recognize, or ignore, them.

34. The language SHOULD be identifiable as such, but not by a particular file name extension. This could be achieved
through simulator lang=cmc_standard directives.

35. The language SHOULD support the ability to do range checking of parameters and bias dependent parameters, and issue
warnings and errors.

3 Comments/Items to be resolved:

4 Language description
The Backus-Naur form will be used to describe the language. We have used the following conventions

- Boldfaced words and boldfaced symbols enclosed by double quotes are literal keywords that are
required in the syntax. If a double quote " is a required part of the syntax it will be written as """

- Everything enclosed by square brackets […], which have not been enclosed by double quotes and
boldfaced, form an optional part of a statement. When square brackets are a literal part of the
syntax they will be bolded and enclosed by double quotes, such as "[" and "]".

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 9 of 83

- Parts of any statement which need to be replaced by the user will be enclosed by the smaller than
and greater than brackets <…>, which have not been boldfaced and enclosed by double quotes,
such as "<" and ">".

- A vertical bar (|) which is not boldfaced and enclosed by double quotes is used to point to separate
alternatives. If a vertical bar is a literal part of the syntax, it will be boldfaced and enclosed by
double quotes such as "|".

- Curly braces { }, which are not boldfaced and enclosed by double quotes, are used to identify a
repeated item. A repeated item may appear as many times as the user wants, or may be omitted.
The repetition occurs to the right of the previous element. If curly braces are a part of the literal
syntax they will be boldfaced and enclosed by double quotes "{" and "}".

- Some non-printable characters are part of the literal syntax, they are the new line character \n and
the tab character \t. They will be boldfaced to show that they are a literal part.

- Some terms are defined in Appendix 4, those terms are written in italics, when encountered for the
first time in this section.

- Examples are enclosed by a box.

4.1 Language rules and definitions

The language is used to describe the topology and characteristics of sets of instances in a text file which
can be parsed by a simulation tool, the netlist.

4.1.1 Statements
Statements are separated by the endline character ("\n"). A statement can be extended over multiple lines
by starting the next line with the character "+". The "+" has to be the first character which is not an
endline character or a delimiter after the endline character for the line to continue. Blank line(s) may
appear within continuation lines and are ignored; the continuation behaves as if the blank line(s) were not
present.

//From A7.1
statement::= <statement_line> \n

{ "+" <statement_line> \n | \n | <comment> \n}
statement_line::= {<printable_ASCII_character> | \t }
printable_ASCII_character ::= ASCII : 0x20-0x7E

The printable_ASCII_character is any character which can be printed, decimal number 32 to 126 in the
ASCII alphabet.

In the next two examples, the lines on the left hand side are equivalent to those on the right hand side

R1 (node1 0) resistor r=50 R1 (node1 0) resistor
+r=50

subckt someThing (node1 node2)
parameters

subckt someThing (node1 node2)
parameters arg1=x arg2=y

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 10 of 83

+ arg1=x

+ arg2=y

4.1.2 Comments
Comments and blank lines are ignored by the parser.

One-line comments are preceded by the characters "//": all text after // until the endline character shall be
treated as a comment.
All text between "/*" and "*/" will be considered a multi-line comment.

//From A7.1
comment ::= one_line_comment | multi_line_comment
one_line_comment ::= "/" "/"{ <printable_ASCII_character> } \n
multi_line_comment ::= "/" "*" { <multi_line_text> } "*""/"
multi_line_text ::= <printable_ASCII_character> | \n

Comment lines and blank lines shall be removed (or ignored) by the parser when parsing the netlist.

The continuation does not continue the comment line; single line comment lines are just that, they
comment out one line without interrupting the continuation.

In the following example, the text on the left hand side is equivalent to the one on the right
//this is a comment
inst1 (node node2) mysubcircuit arg2=30
// is also a comment
/* this is
 a multiline
 comment */

inst1 (node node2) mysubcircuit arg2=30

R1 (node1 0) resistor
+r=50
//+ tc1=1.2e-4
+tc2=0.023
+//dtemp=10
+m=2

R1 (node1 0) resistor r=50 tc2=0.023 m=2

4.1.3 Delimiters (field separators)
A delimiter (field separator) may consist of one or more blanks, tabs, commas or comments. Multiple
delimiters will be treated as one by the parser, except for multiple commas or if they are a part of a string.

//From A7.1
delimiter ::= { " " | \t | "," }

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 11 of 83

4.1.4 Case sensitivity
The CMC language is case sensitive. Keywords with the exception of scale units on numbers and
predefined functions are supposed to be lower case. The parser may provide an optional warning if two
variables are only different in capitalization.

In the following example Node2 and node2 will not be viewed as the same terminal by the parser

R1 (node1 node2) resistor r=10
R2 (Node2 ground) resistor r=10

And the following example shall be flagged for a warning by the parser.

variable1=1
Variable1=2

4.1.5 Strings
Strings are sets of characters on a single line which are contained between two double quotes ". The
allowed characters are those in the ASCII set. Delimiters, comments and other characters lose their
special function when they are part of a string. The following characters can be placed inside a string by
using an escape character: new line (\n), tab (\t), \ (\\), " (\") and any character by its ASCII code as \ooo
(where o is an octal number between 0 and 7). When the ASCII-code \000 is found, the string shall be
terminated after the previous character.

//From A7.2
string ::= "<text_of_string>"
text_of_string ::= {<character>}
character ::= <printable_ASCII_character> | <ASCII_code> | \n | \t | "\" "\" | "\" """
ASCII_code ::= "\"<octal_number><octal_number><octal_number>
octal_number ::= 0|1|2|3|4|5|6|7

To select a set of characters in a string the following function can be used:

//From A7.2.1
select_string ::= <string_variable_name> "(" <i> ":" <j> ")"
string_variable_name := <name>
i ::= <integer_number>
j ::= <integer_number>

returns a string containing the i-th to j-th character in the string, the first character is numbered 0. If i is
less than zero, or j is less than i, or j is greater than the length of the string, then an empty string shall be
returned. The string_variable_name is the name of a variable of the string data-type.

4.1.6 Real numbers
Real numbers are described by IEEE std 754-1985. Three notations are allowed: decimal (s#.#), scientific
(s#.#es#) and scaled (s#.#scale character), where s is an optional sign character of either "+" or "–" and #
is one or more decimal digits.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 12 of 83

//From A7.2.2
real_number ::= [<sign>]<unsigned_number>.<unsigned_number> |
[<sign>]<unsigned_number>[.<unsigned_number>]<exponential>[<sign>]<unsigned_number> |
[<sign>]<unsigned_number>[.<unsigned_number>]<scalefactor>
sign ::= "+" | "-"
unsigned_number ::= <decimal_number>{<decimal_number>}
decimal_number ::= 0|1|2|3|4|5|6|7|8|9
exponential ::= e | E
scalefactor ::= a | f | p | n | u | m | k | K | M | G | T

Numbers cannot contain any spaces. The scale factors are listed below and in Appendix 1. Note that these
are the same scale factors defined by Verilog-A.

Units Prefix Multiplier

a 10-18

f 10-15

p 10-12

n 10-9

u 10-6

m 10-3

K, k 103

M 106

G 109

T 1012

Only one scale factor can be used in a number. Just like Verilog-A, scale factors can’t be used in
combination with the scientific notation. When a number is defined using the scientific notation any scale
unit will be ignored. All text after a scale factor will be ignored by the parser until the next delimiter.

The following two lines have the same meaning:
C1 (node1 0) capacitor C=1u C1 (node1 0) capacitor C=1uF

The CMC standard language does not support any physical units. Including such physical units can cause
unintended values to be assigned to parameters. A warning message shall be sent when the parser detects

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 13 of 83

any characters after the unit-prefix, to warn the user that units are not understood by the parser and could
cause unintended behavior.

The following examples show equivalent lines on either side:
C1 (node1 0) capacitor C=1e-6farad C1 (node1 0) capacitor C=1e-6

M1 (node1 0) mosfet L=0.01meter W=2umeter M1 (node1 0) mosfet L=1e-5 W=2e-6

4.1.7 Integer numbers
The CMC standard language does not allow the user to define the type of a number. Integer numbers are
treated like real numbers with an integer value. Where the simulator expects an integer number, e.g. a
model parameter, the simulator handles the conversion using the rules from the Verilog A LRM 2.3 [1].
The conversion happens by rounding the real number to the closest integer number. When the fraction is
0.5, round away from 0. Where the language needs to count an element of a vector, string or bus, integer
numbers will be used.

//From A7.2.2
integer_number ::= [<sign>]<unsigned_number> | int "(" <real_expression> ")"

4.1.8 Boolean values
Boolean values are valued false or true. Numerically zero means false, while any other value means true.

//From A7.2.2
boolean_value ::= true | false | <real_number>

4.1.9 Names
A normal name may only contain letters, numbers and the characters "_", "#" and "!". The name can start
with any of these characters, except “#”. But by enclosing the name in double quotes, any set of
characters may be used. The quotes are not part of the name but just serve to delimit the node name.
Names shall not be the same as reserved keywords. Implementations may set a limitation to the number of
characters a name contains, but the limit shall be at least 1024 characters. Note that 0 is the reserved
terminal for ground.

//From A7.3.1
name ::= <unquoted_name> | <quoted_name> excluding <keyword>
unquoted_name ::= <starting_name_character> { <name_character> }
quoted_name ::= """ <printable_ASCII_character> { <printable_ASCII_character> } """
name_character ::= a-z | A-Z | 0-9 | "_" | "#" | "!"
starting_name_character ::= a-z | A-Z | 0-9 | "_" | "!"

In the following example, "node1" and node1 are different notations for the same terminal:

C1 (node1 0) capacitor C=1u

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 14 of 83

C2 ("node1" "here_#_is_a_$_strange node name") capacitor C=1u

4.1.10 Operators
The following operators are allowed on real numbers.

= assign value
+ addition
- subtraction
* multiplication
/ division
== comparison is equal to
< smaller than
<= smaller than or equal to
> larger than
>= larger than or equal to

//From A7.3.2
unary_operator ::= "-" | "+"
binary_operator ::= "+" | "-" | "*" | "/" | "=" "=" | "<" | "<" "=" | ">" | ">" "=" | "!" "="

The following operators are allowed on strings:
= assign value
== comparison, is equal
!= comparison, is not equal to

//From A7.3.2
string_operator ::= "=" "=" | "!" "="

The order of operation on the different operators will be the one described in Verilog A LRM 2.3 [1]. For
reference, the order of operation is copied here from highest precedence to lowest.

+, - (unary)
*, /
+, - (binary)
<, <=, >, >=
==, !=
Ternary conditional operator ?:

Parentheses can be used to define the order of operation. Expressions within parentheses have to be
evaluated first.

4.1.10.1 Ternary Conditional Operator

//From A7.3.2
real_ ternary_conditional_operation ::=

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 15 of 83

"(" <boolean_expression> ")" "?" <real_expression> ":" <real_expression> |
<boolean_expression> "?" <real_expression> ":" <real_expression>
boolean_ternary_conditional_operation::=
"(" <boolean_expression> ")" "?" <boolean_expression> ":" <boolean_expression> |
<boolean_expression> "?" <boolean_expression> ":" <boolean_expression>
string_ternary_conditional_operation::=
"(" <boolean_expression> ")" "?" <string_expression> ":" <string_expression> |
 <boolean_expression> "?" <string_expression> ":" <string_expression>

If the value of boolean_expression is true, then the return value of the function is the evaluated value of
the first expression, otherwise it is the evaluated value of the second expression.

In the following example, if param is larger than 10, the variable Rvalue gets the value of param
otherwise it gets the value of the double of param.

Rvalue = (param>10) ? param : 2*param

This operation is different than the conditional instantiation in 4.1.11 or 4.2.8, it only returns a value
which depends on the evaluation of the boolean_expression. It can only be used where an expression can
be placed. On the other hand if{}/else{} commands allows conditional instantiation of netlist lines. It
does not return a value and it can only be used at a new line.

4.1.11 Functions
The CMC language supports the predefined functions listed later in this section as well as those defined
by the user. A function is called by its name, which has to be a legal name and the function parameters
come after the function call between parentheses "(" and ")" separated by a comma.

//From A7.3.3
function ::= <function_name> "(" [<function_parameter_list>] ")"
function_name ::= <name>
parameter ::= <real_number> | <boolean_value> | <string> | <vector> | <expression>
function_parameter_list ::= <parameter> {"," <parameter>}

4.1.11.1 User-defined functions
A user-defined function is defined by:

//From A7.3.3
function_definition ::= <function_name> "(" [<parameter_name_list>] ")" "=" \n
"{" \n
[{<function_line> \n}]
return <expression> \n
"}" \n
function_line ::= <function_conditional> | <variable_assignment>
parameter_name_list ::= <parameter_name> { "," <parameter_name>}

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 16 of 83

real_function_definition ::= <real_function_name> "(" [<parameter_name_list>] ")" "=" \n
"{" \n
[{<function_line> \n}]
return <real_expression> \n
"}" \n
real_function_name ::= <name>
real_function_call ::= <real_function_name> "(" [<function_parameter_list>] ")"

boolean_function_definition ::= <boolean_function_name> "(" [< function_parameter_name_list>] ")"
"=" \n
"{" \n
[{<function_line> \n}]
return <boolean_expression> \n
"}" \n
boolean_function_name ::= <name>
boolean_function_call ::= <boolean_function_name> "(" [<function_parameter_list>] ")"

string_function_definition ::= <string_function_name> "(" [<parameter_name_list>] ")" "=" \n
"{" \n
[{<function_line> \n}]
return <string_expression> \n
"}" \n
string_function_name ::= <name>
string_function_call ::= <string_function_name> "(" [<function_parameter_list>] ")"

function_name is the legal name of the user-defined function
parameter_name_list is a list of the names of parameters that are passed to the function by the user

separated by a comma, these are the function arguments.
function_line is an optional set of expressions, assignments or conditionals.
return is a keyword to return the evaluated value of the expression which follows as the value of

the function

When the return line is executed by the parser, the expression is evaluated and returned to the
expression which called the function. The rest of the function is ignored.

var1 = 10k
var2 = if (var1 < 5) then 1 else 0 endif
var3 = var1+var2*log(10/3)
myMicro(x) =
{
return x*1e-6 // user defined function
}
R1 (node1 0) resistor R=var3+5u
C1 (node1 0) capacitor C=myMicro(3.3)

myMicro(x) =
{
var2 = if (x < 5) then 1 else 0 endif

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 17 of 83

var2 = exp(var2)
return x*var2*1e-6 // user defined function
}

R1 (node1 0) resistor R=5u
C1 (node1 0) capacitor C=myMicro(3.3)

sorta_invx(x) =
{

if (x == 0)
{

 return 0 //return 0 if x is 0
}
return 1/x //otherwise return 1/x

}

Functions have their own namespace.

It is possible to use local function-variables within a function, by assigning them a value. These variables
are local to the function call only, they can be given a new value within a function, but do not affect any
variable outside the function. Only local function-variables and the function arguments can be used within
a function together with environment parameters (described in 4.2.9). Only the returned value of the
function is returned to the instance which called for it. A function can contain other (user-defined)
functions, but it can’t call itself or another function which calls itself. Recursive functions are not allowed.

A function can contain a conditional statement as described in 4.2.8.

//From A7.3.3
function_conditional ::= if "(" <boolean_expression> ")" \n
"{" \n
{<function_line> \n}
"}" \n
[else \n
"{" \n
{<function_line> \n }
"}" \n]

if is a keyword, the boolean_expression is an expression which has a Boolean value, and which
can be evaluated by the parser. Everything between the first set of curly braces "{" and "}" will be
executed if the value of this expression is true. Otherwise, it will be ignored.

else is a keyword, everything between the curly braces "{" and "}" will be executed if the value of
boolean_expression is false, otherwise it will be ignored.

4.1.11.2 Mathematical functions
The limitations of the domain and type of the output are referenced here.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 18 of 83

The following functions are defined for real numbers and return real numbers, albeit some return real
numbers with integer values. Trigonometric functions expect arguments in radians, not degrees, while
inverse trigonometric functions return arguments in radians, not degrees.

//From A7.3.3.1
natural_logarithm_function ::= ln "(" <x> ")" returns the natural logarithm of x (x>0)
log10_function ::= log10 "(" <x> ")" returns the base-10 logarithm of x (x>0)
exponential_function ::= exp "(" x ")" returns the exponential function of x with no limiting for large
values of x
limiting_exponential_function ::= explim "(" <x> "," <y> ")" returns the exponential function of x with
linear extrapolation for x>y. When x<=y, explim(x,y)=exp(x) else explim(x,y) = exp(y)*(1.0+x-y)
power_function ::= pow "(" <x> "," <y> ")" returns the power of x to y (for x>0, all y, if x=0, y>0, if
x<0, int(y))
sine_function ::= sin "(" <x> ")" returns the sine of x
cosine_function ::= cos "(" <x> ")" returns the cosine of x
tangent_function ::= tan "(" <x> ")" returns the tangent of x (x!= (2*n+1)*pi/2, with n an integer value)
inverse_sine_function ::= asin "(" <x> ")" returns the inverse sine of x (-1<=x<=1)
inverse_cosine_function ::= acos "(" <x> ")" returns the inverse cosine of x (-1<=x<=1)
inverse_tangent_function ::= atan "(" <x> ")" returns the inverse tangent of x
atan2_function ::= atan2 "(" <x> "," <y> ")" returns the inverse tangent of y/x (all x and all y, with
atan2(0,0) =0), this function takes the signs of x and y into account, such that atan2(-1,1)=3π/4 and
atan2(1,-1)=-π/4.
hyperbolic_sine_function ::= sinh "(" <x> ")" returns the hyperbolic sine of x
hyperbolic_cosine_function ::= cosh "(" <x> ")" returns the hyperbolic cosine of x
hyperbolic_tangent_function ::= tanh "(" <x> ")" returns the hyperbolic tangent of x
inverse_hyperbolic_sine_function ::= asinh "(" <x> ")" returns the inverse hyperbolic sine of x
inverse_hyperbolic_cosine_function ::=acosh "(" <x> ")" returns the inverse hyperbolic cosine of x
(x>=1)
inverse_hyperbolic_tangent_function ::= atanh "(" <x> ")" returns the inverse hyperbolic tangent of x (-
1<x<1)
absolute_value_function ::= abs "(" <x> ")" returns the absolute value of x
square_root_function ::= sqrt "(" <x> ")" returns the square root of x (x>0)
db_function ::= dB "(" <x> ")" returns the value of x in decibel 20*log(x) (x>0)
integer_value_function ::= int "(" <x> ")" returns the integer value of x
floor_function ::= floor "(" <x> ")" returns the lower or equal integer value of x
ceiling_function ::= ceiling "(" <x> ")" higher or equal integer value of x
nearest_integer_function ::= nint "(" <x> ")" returns the nearest integer value of x, if x is 0.5, the value is
rounded down
sign_function ::= sign"(" <x> ")" returns sign of x, -1 or 1 if negative or positive value, 0 if x is 0
minimum_function ::= min "(" <x> "," <y> ")" returns the minimum value of x and y
maximum_function ::= max "(" <x> "," <y> ")" returns the maximum value of x and y
x::= <real_expression>
y::= <real_expression>

real_predefined_function ::= natural_logarithm_function | log10_function | exponential_function |
limiting_exponential_function | power_function | sine_function | cosine_function | tangent_function |
inverse_sine_function | inverse_cosine_function | inverse_tangent_function | atan2_function |

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 19 of 83

hyperbolic_sine_function | hyperbolic_cosine_function | hyperbolic_tangent_function |
inverse_hyperbolic_sine_function | inverse_hyperbolic_cosine_function |
inverse_hyperbolic_tangent_function | square_root_function | db_function |
integer_value_function | floor_function | ceiling_function | nearest_integer_function | sign_function |
minimum_function | maximum_function | absolute_value_function | range_check

The following functions are defined for strings:

//From A7.3.3.1
uppercase_function ::= upper "(" <s> ")" converts all lower case characters in string s to upper case
lowercase_function ::= lower "(" <s> ")" converts all upper case characters in string s to lower case
concatenate_function ::= concat "(" <s> "," <t> ")" concatenates strings s and t with no intervening
space
s::= <string_expression>
t::= <string_expression>

4.1.12 Expressions
Expressions can contain numbers, operators, functions and parameter names.

//From A7.3.4
expression ::= <real_expression> | <string_expression> | <boolean_value>
real_operation ::= [<unary_operator>] <real_expression> [<binary_operator> <real_expression>] | "("
[<unary_operator>] <real_expression> [<binary_operator> <real_expression>] ")"
string_operation ::= <string_expression> [<string_operator> <string_expression>] | "("
<string_expression> [<string_operator> <string_expression>] ")"
string_comparison ::= <string_expression> "=" "=" <string_expression> | <string_expression> "!" "="
<string_expression>
real_expression ::= <real_number> | <real_operation> | <real_function> | <real_variable> |
<real_parameter> | <string_comparison> | <real_ternary_conditional_operation>
boolean_expression ::= <real_expression> | <boolean_value> | <boolean_ternary_conditional_operation>
string_expression ::= <string> | <string_operation> | <string_function> | <string_variable> |
<string_parameter> | <string_ternary_conditional_operation>
real_function ::= <real_predefined_function> | <real_function_call> | <statistical_function>
string_function ::= <string_predefined_function> | <string_function_call>
boolean_function ::= <boolean_predefined_function> | <boolean_function_call>

4.1.13 Vectors
Vectors or lists of values are defined between square brackets "[" and "]" and the values are separated by a
comma. The values can be expressions of the same data-type.

//From A7.2.3
vector ::= real_vector | boolean_vector | string_vector
real_vector ::= "[" <real_expression> { "," <real_expression> } "]"
boolean_vector ::= "[" <boolean_expression> | { "," <boolean_expression> } "]"
string_vector ::= "[" <string_expression { "," <string_expression> } "]"

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 20 of 83

times = [0,1n,2n,5n,…]

4.1.14 Variables
Variables are symbols for values which can be used within expressions in the netlist. Parameters are
symbols for values which are used to pass a value to an instance/model/subcircuit. Within a subcircuit, a
parameter can be used in an expression (but its value cannot be redefined), while the value of a variable
cannot be passed to the subcircuit from the outside.

Variables generally can be assigned a value once within a given scope. The variable assignment acts as
the definition of the variable. Multiple assignments can be made on the same line in the netlist.

//From A7.3.5
variable_assignment ::= <single_variable_assignment> { <delimiter> <single_variable_assignment> }
single_variable_assignment ::= <real_variable_assignment> | <boolean_variable_assignment> |
<string_variable_assignment> | <vector_variable_assignment>
real_variable_assignment := <real_variable> "=" <real_expression>
real_variable := <name>
boolean_variable_assignment := <boolean_variable> "=" <boolean_expression>
boolean_variable := <name>
string_variable_assignment := <string_variable> "=" <string_expression>
string_variable := <name>
vector_variable_assignment := <vector_variable> "=" <vector>
vector_variable := <name>

 This will define a variable with the name real_variable, boolean_variable, string_variable or
vector_variable with the respective value real_expression, boolean_expression, string_expression and
vector throughout the scope the line is placed in. The variable can be used in any expression regardless of
the location of the line of the assignment.

In the following examples, the netlist on the left hand side is equivalent to the one on the right hand side.

variable1=x variable2=y
variable3=z

variable1=x variable2=y
+variable3=z

The following lines generate a model of a resistor with r=x=1

model Rmodel resistor r=variable1
variable1=x

variable1=x
model Rmodel resistor r=variable1

A variable has one value in any given level of hierarchy. Within a given level of hierarchy, the user can
assign a value to a variable only once, except by using a redefine keyword. If the user assigns a value to a
variable more than once in a given scope without this keyword, the simulator shall send and error message
to the parser output and the simulation ends.

This is illustrated in the following example which results in an error message being sent to the parser
output that the variable x has been redefined.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 21 of 83

x=1
r1 (node1 0) resistor r=x
x=2
r2 (node2 0) resistor r=x

The user has the capability of changing the value of a variable within a given scope by using the redefine
command within that scope.

//From A7.3.5
redefine_variable ::= redefine_real_variable | redefine_boolean_variable | redefine_string_variable |
redefine_vector_variable
redefine_real_variable ::= redefine <real_variable> "=" <real_expression>
redefine_boolean_variable ::= redefine <boolean_variable> "=" <boolean_expression>
redefine_string_variable ::= redefine <string_variable> "=" <string_expression>
redefine_vector_variable ::= redefine <vector_variable> "=" <vector_expression>

This command sets the value of the variable to that of the expression. This redefined value of the variable
will be used throughout the scope regardless of the location in the netlist of the redefine line and the
original assignment. This command can only be used once per variable in a given scope. If the user tries
to redefine the same variable more than once in a given scope, the simulator shall send an error message
to the parser output and the simulation ends. If the user tries to redefine a variable which has not been
previously defined, the simulator shall send an error message to the parser output and the simulation ends.

Both of the following netlists instantiate resistors r1 and r2, both with r=2

x=1
r1 (node1 0) resistor r=x
redefine x=2
r2 (node2 0) resistor r=x

redefine x=2
r1 (node1 0) resistor r=x
x=1
r2 (node2 0) resistor r=x

The hierarchical and scoping rules for the value of a variable across different levels of hierarchy are
discussed in 4.3.2 and 4.3.3.

4.1.15 Parameter assignments
Parameters can be explicitly passed down to an instance, model or subcircuit using parameter assignment
on the instance line.

//From A7.3.6
parameter_list ::= <single_parameter_assignment> { <delimiter> <single_parameter_assignment> }
single_parameter_assignment ::= <real_parameter_assignment> | <boolean_parameter_assignment> |
<string_parameter_assignment> | <vector_parameter_assignment>
real_parameter_assignment := <real_parameter> ["=" <real_expression>]
real_parameter := <name>
boolean_parameter_assignment := <boolean_parameter> ["=" <boolean_expression>]
boolean_parameter := <name>
string_parameter_assignment := <string_parameter> ["=" <string_expression>]

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 22 of 83

string_parameter := <name>
vector_parameter_assignment := <vector_parameter> ["=" <vector>]
vector_parameter := <name>
parameter = <real_parameter> | <boolean_parameter> | <string_parameter> | <vector_parameter>

Lists of parameter assignments can be created by separating multiple parameter assignments with a
delimiter.

If an expression contains a parameter which at evaluation has not been defined in the netlist, then the
parser returns an error to the parser output.

4.1.16 Terminals
Terminals are single nodes of the net, or collections of nodes (bus terminal). The list of terminals are
optionally defined between parentheses "(" and ")", and separated by a delimiter.

Terminals are referred to by their name, which has to abide to the naming rules and cannot start with a "."
and cannot contain any square brackets "[" and "]" . A list of terminals can be assigned to an instance in
their standard order, or by their name. A model or a subcircuit can have a terminal which does not need to
be passed to it, the language defines a mechanism to not pass a terminal to a model or subcircuit. When
the reserved keyword ?UNCONNECTED is passed to a terminal, that terminal is regarded as if it is not
specified. To assign a terminal to a named node the following convention is used:

//From A7.3.7
terminal_assignment ::= "." <name_of_terminal_in_model> "(" <terminal_name> ")"
name_of_terminal_in_model ::= <name>
terminal_name ::= <name> | "?"UNCONNECTED

name_of_terminal_in_model is the name of the terminal in the model/subcircuit/primitive that is
being called

terminal_name is the legal name of the terminal in the current scope

If one terminal is assigned by name, all terminals have to be assigned by name. Terminals which are not
explicitly assigned, are considered as not specified. An error shall be sent if the same terminal is assigned
more than once.

If terminals are assigned as an ordered list, the reserved keyword ?UNCONNECTED can be used to
define that the terminal is not specified. If the model or subcircuit has more terminals than the ordered list,
the parser will regard the missing terminals at the end to be unspecified.

A terminal list is defined as:

//From A7.3.7
terminal_list ::= [<terminal_name>]{ <delimiter> <terminal_name> } | "("
[<terminal_name>]{ <delimiter> <terminal_name> } ")" | [<terminal_assignment>]{ <delimiter>
<terminal_assignment> } | "(" [<terminal_assignment>]{ <delimiter> <terminal_assignment> } ")"
terminal ::= <terminal_assignment> | <terminal_name>

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 23 of 83

The number of terminals in the list shall not be larger than the number of terminals which have
been declared in the underlying model/instance/subcircuit.

For example, a bipolar transistor with optional substrate and thermal terminals such as Mextram has 5
nodes named c b e s dt (defined by model developer).

q1a (.c(top) .b(top) .e(gnd) .dt(q1a_t)) mextram length=0.35u width=0.5u

The following three example boxes all feature instance lines which are equivalent to each other

nfet1 (d g s b) bsim4 w=1u l=0.1u
nfet1 (.drain(d) .gate(g) .source(s) .bulk(b)) bsim4 w=1u l=0.1u
nfet1 (.gate(g) .drain(d) .source(s) .bulk(b)) bsim4 w=1u l=0.1u

q1a (.c(top) .b(top) .e(gnd) .dt(q1a_t)) mextram504 area=1
q1a (top top gnd ?UNCONNECTED q1a_t) mextram504 area=1

q1b (.c(top) .b(top) .e(gnd) .s(sub)) mextram504 area=1
q1b (top top gnd sub ?UNCONNECTED) mextram504 area=1
q1b (top top gnd sub) mextram504 area=1

The following line shall result in an error as .drain is assigned twice

nfet1 (.drain(b) .gate(g) .drain(d) .source(s) .bulk(b)) bsim4 w=1u l=0.1u

4.1.16.1 Bus terminals
Bus terminals, which are terminal which contain a collection of nets instead of a single one. It allows
instantiating multiple terminals to a single name. A terminal can be made into a bus terminal using square
brackets "[" and "]" after the terminal name. The keyword ?UNCONNECTED can also be used to
explicitly not specify a bus terminal.

//From A7.3.7
bus_terminal ::= <terminal_name> "[" <start_integer> ":" <stop_integer> "]"
start_integer ::= <integer_number>
stop_integer ::= <integer_number>

instantiates a set of abs(stop_integer-start_integer)+1 terminals, which can be referenced after the
definition by:

//From A7.3.7
bus_terminal_reference ::= <terminal_name> "[" <start_integer> [":" <stop_integer>] "]"

terminal_name is the name of a terminal which has been previously declared as a bus terminal.
If stop_integer is defined, a bus terminal with abs(stop_integer-start_integer)+1 terminals is

referenced, where terminals start_integer through stop_integer are selected. If stop_integer is larger than

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 24 of 83

start_integer the terminals will be in ascending numerical order, otherwise they will be in descending
numerical order.

If only start_integer is defined, the start_integerth terminal of the bus terminal is referenced, which
will be treated as if it was not a bus terminal.

4.1.16.2 Assignment to bus instances
The terminal list for a bus instance can be assigned by list or by name.

By list, the following convention will be used, for a bus instance with n instances, the first n terminals
will be assigned to the first terminal of every individual instance, the next n terminals to the next terminal
and so on.

By name, if one terminal is assigned by name all terminals have to be assigned by name. A similar
convention is used for a bus instance with n instances as with regular instances, except that the
terminal_name is now a list of n terminals.

//From A7.3.7
busterminal_assignment ::= "." <name_of_terminal_in_model> "(" <list_of_terminals> ")"
list_of_terminals ::= <terminals> { <delimiter> <terminals> }
terminals ::= <terminal> | <bus_terminal>

name_of_terminal_in_model is the name of the terminal in the model/subcircuit/primitive that is
being called

list_of_terminals is a list of n legal terminal names in the current scope

4.1.17 User-defined models and primitive models
User-defined models can be created using the model statement, as a Verilog-A module or as a C-API
element. Primitive models are defined by a CMC standard or by Verilog-A code included in this
document. The list of primitive models can be found in Appendix 2.

BSIM3 and BSIM4 have a different identifying name, bsim3 and bsim4. BSIM3 version 3.24 and version
3.23 do not. If the model developer would decide that they need a different name they can have that name
added to the list of identifying names. The version and subversion number are defined by the model
developers by using the CMC release procedures and shall be real numbers.

4.1.17.1 Verilog-A model
A file containing Verilog-A code can be loaded with the following compiler directive:

//From A7.4.1
load_veriloga ::= import """veriloga""" "," """<file_name>"""

import "veriloga" is a compiler directive to load a Verilog-A file
file_name is a string containing the name of the file, with the appropriate path, depending on the

operating system, as described in 4.1.21.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 25 of 83

Verilog-A models are called in the same way as a primitive or otherwise defined model.

A file containing compiled Verilog-A code can be loaded with the following compiler directive:

//From A7.4.1
load_compiled_veriloga ::= import """compiled_veriloga""" "," """<file_name>"""

import "compiled_veriloga" is a compiler directive to load a compiled Verilog-A file
file_name is a string containing the name of the file, with the appropriate path, depending on the

operating system, as described in 4.1.21.

One file will not work for all simulation tools, as this is compiled code. This will not work for all
operating systems. It is possible to resolve this by identifying the simulation environment as described in
4.1.18.1.1.

Verilog-A models shall be declared at the highest hierarchical level of a netlist. In general, Verilog- A
models will be available globally throughout the netlist. A possible exception is to allow scoping of
Verilog-A files when loaded within a technology. This allows the user to resolve potential naming
conflicts when 2 design kits are used within the same netlist.

subckt subcircuit_1 (node1 node2)
import "veriloga" , "verilog_file.va" //this file contains module test
test1 (node1 node2) test //instantiates the test module
end subcircuit_1

test2 (node1 node2) subcircuit_1
test1 (node1 node2) test

4.1.17.2 C-API Models
C-API models are called in the same way as a primitive or otherwise defined model.

The TMI2 directory can be loaded using:

//From A7.4.1
load_tmi2 ::= import """TMI2""" "," """<path>"""

import "TMI2" is a compiler directive to point to a TMI2
path is a quoted string containing the appropriate path, depending on the operating system, to the

TMI2 files.

The number of libraries which can be active at the same time within a given technology is set by the rules
of the C-API.

4.1.18 C-preprocessor commands
C-preprocessor commands can be used in the CMC standard language. It is important to understand that
these commands are statically defined. The CMC standard language supports the following C-

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 26 of 83

preprocessor commands: #define, #undef, #ifdef, #include, #if, #else, #elif #endif and –D on the
command line. Their usage will follow the description in the C-standard ISO/IEC9899:TC2. The CMC
language requires that the evaluation can occur by the parser and does not depend on any simulation
variables such as voltages or currents. This section will explain the usage, the C-standard is the reference
which shall be followed.

//From A7.4.2
preprocessor_define ::= #define <token1> ["(" <parameter_name> { "," <parameter_name>} ")"]
[<token2>]
parameter_name ::= <token>
token1 ::= <identifier_token>
token2 ::= <token>
token::= <text_of_string>
identifier_token::= <identifier_token_character>{<identifier_token_character>}
identifier_token_character ::= <printable_ASCII_character> except <delimiter>

is a macro-definition. It replaces the token token1 by token2 throughout the netlist until it is terminated by
a corresponding #undef. The pre-processor will add token1 to its namespace and its presence can be
checked by #ifdef. If token2 is missing, all occurrences of token1 will be replaced by a single space. If
parameters are present between the parentheses after token1, then the names of the parameters within
token2 will be replaced by the arguments of the instance that is replaced by token1 in the netlist.

#define CHECK 0
#define sum(a,b) a+b

test=sum(1,CHECK)

will first be replaced by

test=sum(1,0)

and then by

test=1+0

//From A7.4.2
preprocessor_undefine ::= #undef <token1>

Terminates a previously defined macro-definition, which has been defined by #define token1 […]. It
removes the macro from the namespace and the previously defined macro will not replace anything else
beyond this in the netlist. If token1 has not been previously defined this is ignored.

In the following example, the value of test is 0 and the value of test2 is the string CHECK.

#define CHECK 0
test=CHECK
#undef CHECK
test2=CHECK

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 27 of 83

//From A7.4.2
preprocessor_ifdef::= #ifdef <token1> \n
{ <statement> }
[#else { <statement> } \n]
 #endif \n
preprocessor_ifndef::= #ifndef <token1> \n
{ <statement> }
[#else { <statement> } \n]
#endif \n

Tests if the macro token1 is present for #ifdef, or not present for #ifndef in the macro namespace. If this
is the case, then the lines between the #ifdef or #ifndef statement to the following #else or #endif
statement are processed by the parser, otherwise they are ignored. If the block was ended by #else then the
block between #else and #endif will be executed if the previous block was not, otherwise all lines
between #else and #endif will be ignored.

In the following example, the value of check is 0 at the end.

#define CHECK 0
#ifdef CHECK
check=1 //is parsed
#endif

#undef CHECK
#ifdef CHECK // is false
check=1.5 //is ignored
#endif

#ifndef CHECK // is false
check=0 //is parsed
#endif

//From A7.4.2
preprocessor_include ::= #include """ <file_name> """

The CMC standard language allows the use of this command to include a file, just like in the C-standard.
This is described in 4.1.22. An extension of this command to include libraries can be found in 4.2.4. The
file_name is a quoted string.

//From A7.4.2
preprocessor_if ::= #if <boolean_expression> \n
{ <statement> }
{#elif <boolean_expression> \n
{ <statement> }
[#else \n
{ <statement> }]
#endif \n

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 28 of 83

The parser must be able to evaluate the boolean_expression during parsing. They cannot depend on any
information from the simulator.
If the first boolean_expression evaluates to a non-zero value (true), then all lines until the following #elif,
#else or #endif are executed, and if this is not an #endif statement all lines from then to the #endif
statement are skipped.
If the first boolean_expression evaluates to a zero value(false), if the next statement is #elif, if the second
boolean_expression is evaluated as true, then the lines until the following #elif, #else or #endif are
executed and if this is not an #endif statement all lines from then to the #endif statement are skipped.
This is repeated with multiple #endif statements.
If all previous #if and #elif statements are evaluated as false, then all the lines between #else statement
and #endif are executed.

The following example will replace all further occurrences of TEST by 1:

#define CHECK 1

#if CHECK>1
#define TEST 2
#elif CHECK>0
#define TEST 1
#else
#define TEST 0
#endif

-D on the command line
The CMC standard language allows the user to define a macro on the command line when invoking the
simulation program or the parser. Placing –D <token1> [= <token2>], on the command line will place the
corresponding: #define <token1> [<token2>] at the top of the called netlist. Token2 can only be a
constant integer or character. If the macro has already been defined within the netlist this will result in a
warning, and the original definition (already in the netlist) will be used.

simulator.exe -DMAC=50 circuit.ckt

is the same as adding the following line to the top of the netlist circuit.ckt:
#define MAC 50

4.1.18.1 Reserved Macros
Appendix 6 contains a list of the reserved macros. These cannot be defined by the user, but are defined by
the simulator. Reserved macros start with "_".

4.1.18.1.1 Simulation environment
There might be a need to tailor a netlist to the simulator which uses it. The C-preprocessor commands can
be used to instantiate parts of the netlist depending on the simulator, by using reserved macros defined by
every simulator vendor and the reserved macros _MAJOR_VERSION and _MINOR_VERSION. The
name of the simulator-specific identifying macro shall be defined and documented by the creator of the
tool, it shall follow the rules of a reserved macro and start with a "_".

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 29 of 83

In the following example, if the _EDA_TOOL macro has been defined to be "EDA_simulator", three
different lines can be executed depending on the definition of the _MAJOR_VERSION macro. If it is
1the options setting=1.0 line is executed, if it is 2, the options setting=2.0 line will be executed, else the
options setting=0.0 line is executed.

#ifdef _EDA_TOOL
#if _MAJOR_VERSION == 1
options setting=1.0
#elif _MAJOR_VERSION == 2
options setting=2.0
#else
options setting=0.0
#endif

There might also be a need to change the netlist to the operating system which is being used. If the
simulator runs in Windows then #ifdef _WINDOWS will be true. If it runs in Linux, #ifdef _LINUX will
be true and for Solaris #ifdef _SOLARIS will be true

In the following example, if the simulator runs in a Windows environment the file
"C:\WindowsPath\Includefile.txt will be included, while if it would run in a Linux environment, the file at
"~/linuxpath/Includefile.txt" would be included.

#ifdef _WINDOWS
#include "C:\WindowsPath\Includefile.txt
#endif
#ifdef _LINUX
#include "~/linuxpath/Includefile.txt"
#endif

4.1.19 Interface with other languages
The CMC standard language allows part of the netlist to be written in another language. The keyword
simulatorlanguage can be used to switch between languages.

//From A7.4.3
set_simulatorlanguage ::= simulatorlanguage "=" <language_name>
language_name ::= cmc_standard | VerilogA | <string>

simulatorlanguage is a keyword which allows all following lines to be read as if they were
written in the language language_name. The parser will assume this remains so until another
simulatorlanguage command is used.

The CMC standard language will be invoked as simulatorlanguage = cmc_standard.
Verilog A will be invoked as simulatorlanguage = VerilogA.

When the language is set by the simulatorlanguage command, the rules of that language will be used until
the next simulatorlanguage command is found by the parser. This is persistent through include files.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 30 of 83

A functionality of the interface may be defined between the cmc_standard language and the other
languages by the owner of the other language.

4.1.20 User-generated warnings and errors
The user has the ability to have a warning printed to a parser output. This output can be a message to the
screen or to a log file, this depends on the simulator environment. This warning can contain the value of
any expression.

//From A7.4.4
warning ::= warning "(" <warning_message> [{"," <argument>}] ")"
warning_message ::= <string>
argument ::= <expression>

 warning is a keyword which allows the user to print a text to the parser log.
warning_message is a string, %e, %E, %f, %F, %g, %G, %m, %M, %s and %S can be used to

insert one of the arguments into the string. The first %e will be replaced by the first argument and so
on. %e, %E, %f, %F and %g, %G are used with real numbers and support the formatting options of C. By
placing 2 integers separated by a "." ahead of the letter, the minimum field width and the number of
decimal fractional digits can be set. %m or %M allows the user to print out the hierarchical name of the
instance it refers to. %s or %S is used with a string.

arguments are expressions separated by a comma

The CMC standard language also has a function to do range checking for parameters in a subcircuit call.

//From A7.4.4
range_check ::= range_check "(" <input> "," <lower_bound> "," <upper_bound> ","
<warning_message> ")"
input ::= <real_expression>
lower_bound ::= <real_expression>
upper_bound ::= <real_expression>

range_check is a keyword for the function which returns the value of a parameter bounded by a
minimum and a maximum value

If both lower_bound and upper_bound are assigned a value, upper_bound shall be greater than
lower_bound, otherwise an error message will be sent by the parser.

If a value of lower_bound is passed to the function and if input is smaller than lower_bound, then the
function returns is the lower_bound and the warning_message is printed to the parser output. If a value of
upper_bound is passed to the function and if input is greater than upper_bound, then the function returns
the maximum_value and the warning_message is printed to the parser output. Otherwise the function
returns the input. If the input cannot be evaluated, an error message is sent to the parser output, similar to
any other expression which cannot be evaluated.

In the following example, x=0.6, y=5, z=0.6, z2=1, z3=0, z4=-0.4 and z5=5, the warning messages "The
value of y = 5.000000e+00 must be between 0 and 1" and "The value of x-1 = -4.000000e-01 must be
between 0 and 1" will be sent to the parser output.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 31 of 83

x=0.6
y=5
z=range_check(x,0,1,"The value of x = %e must be between 0 and 1",x)
z2=range_check(y,0,1,"The value of y = %e must be between 0 and 1",y)
z3=range_check(x-1,0,1,"The value of x-1 = %e must be between 0 and 1",x-1)
z4=range_check(x-1,,1,"The value of x-1 = %e must be smaller than 1",x-1)
z5=range_check(y,0,,"The value of y = %e must be greater than 0 and 1",y)

The user may have the option to set the number of times an identical warning shall be printed to the
parser output.

The user also has the ability to instantiate an error, with a message to the parser output, which also causes
the parser to exit after parsing the rest of the netlist, but before starting the simulation. This output can be
a message to the screen or to a log file, this depends on the simulator environment. This warning can
contain the value of any expression.

//From A7.4.4
error ::= error "(" <warning_message> [{"," <argument>}] ")"

error is a keyword which allows the user to print a text to the parser log.
warning_message is a string, %e, %E, %f, %F, %g, %G, %m, %M, %s and %S can be used to

insert one of the arguments into the string. The first %e will be replaced by the first argument and so
on. %e, %E, %f, %F and %g, %G are used with real numbers and support the formatting options of C. By
placing 2 integers separated by a "." ahead of the letter, the minimum field width and the number of
decimal fractional digits can be set. %m or %M allows the user to print out the hierarchical name of the
instance it refers to. %s or %S is used with a string.

arguments are expressions separated by a comma

In the following example, the warning messages " x is too large" and "y is too large" will be sent to the
parser output and the simulation will terminate after parsing.

x=2
y=3
if(x>1)
{
error("x is too large")
}
if(y>1)
{
error("y is too large")
}

The user also has the ability to instantiate an error, with a message to the parser output, which also causes
the parser to exit immediately upon detection. This output can be a message to the screen or to a log file,
this depends on the simulator environment. This warning can contain the value of any expression.

//From A7.4.4
fatal ::= fatal "(" <warning_message> [{"," <argument>}] ")"

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 32 of 83

fatal is a keyword which allows the user to print a text to the parser log.
warning_message is a string, %e, %E, %f, %F, %g, %G, %m, %M, %s and %S can be used to

insert one of the arguments into the string. The first %e will be replaced by the first argument and so
on. %e, %E, %f, %F and %g, %G are used with real numbers and support the formatting options of C. By
placing 2 integers separated by a "." ahead of the letter, the minimum field width and the number of
decimal fractional digits can be set. %m or %M allows the user to print out the hierarchical name of the
instance it refers to. %s or %S is used with a string.

arguments are expressions separated by a comma

In the following example, the warning messages " x is too large" will be sent to the parser output and the
simulation will terminate after it has read the fatal("x is too large") line.

x=2
y=3
if(x>1)
{
fatal("x is too large")
}
if(y>1)
{
error("y is too large")
}

4.1.21 Files
The language allows files to be referred to by the file_name. The file_name is a string containing the
name of the file with the appropriate path. Either a relative path or an absolute path can be used. The
syntax of the path name follows the convention of the operating system which the simulation tool uses. A
reserved macro can be used to define a path differently depending on the operating system which is used.
_WINDOWS, _LINUX and _SOLARIS, will be considered defined by the parser if the simulator is
running in respectively Windows, Linux and Solaris. If a relative path is used, the working directory is the
directory which contains the netlist, where the line which refers to the file_name is found. The working
directory changes when a new file is parsed which is in a different directory, when the new file is finished
parsing, the working directory moves back to the original one as the rest of the original file is being
parsed. Keep in mind that the \ character is written as \\ in the string.

//From A7.4.1
path ::= <string>

4.1.22 Including netlist
The CMC standard language allows incorporating a different netlist into the netlist using the #include
pre-processor command. The parser replaces the instance line of the include statement with the new netlist.
This describes the same functionality as described in 4.1.18 above.

//From A7.4.2
preprocessor_include ::= #include """ <file_name> """

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 33 of 83

#include is a keyword to load a netlist
file_name is a quoted string containing the name of the file, with the appropriate path, depending

on the operating system, as described in 4.1.21.

The language only supports including one netlist at a time. Other files in the directory of the included file
are not loaded by the parser or searched for potentially missing model cards.

4.1.23 Namespace
The names of different aspects of a netlist have a different namespace. The following table shows the
different namespaces that are allowed in the language and which aspects share them.

Names of variables, subcircuit parameters, paramsets, environment parameters and functions
Names of instances and bus instances
Names of models (also Verilog-A models), subcircuits
Names of terminals and global nodes
Names of sections of libraries
Filenames
Names of Technologies
Names of preprocessor-defined macros

If an identical name has already been defined within the same namespace, subsequent definition of this
name will be flagged as an error by the parser. If a name is defined which only differs with an existing
name (within the same namespace) in capitalization, a warning shall be issued to the parser output.
Objects within different namespaces can share the same name within the same hierarchy.

The following example results in an error:

x1=1
paramset x1 paramset
{
y=1
}

While the next example results in a warning: "R1 and r1 only differ in capitalization within the same
namespace":

model r1 resistor r=10
subckt R1 (node1 node2)
r1 (node1 node2) resistor r=10
end r1

The first three of these namespaces, can have a local copy within a particular scope. The others can only
be globally defined. This is described in 4.3.3. The hierarchically lower subcircuits will inherit the higher

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 34 of 83

defined namespace, but new variables, models and instances can be re-defined with previously existing
names.

4.1.24 Encryption directives

Some tools allow users to encrypt parts of the netlist. This requires two keywords which start and end the
part which needs to be decrypted.

//From A7.4.5
encryption ::= encrypted \n
{ <line> }
endencrypted \n
line::= { <any_character> }
any_character ::= ASCII : 0x00-0xFF

encrypted and endencrypted are two reserved keywords which tell the encryption tool to encrypt
everything between encrypt and endencrypt. This standard does not define any sort of encryption method;
the encryption method is implementation dependent. The standard does not define the format of the
encrypted content.

The parser can use these keywords to decrypt the part of the netlist between them.

4.2 Circuit Description

4.2.1 Instance statements
An instance is a particular placement of a device or subcircuit, represented in the netlist by an instance
statement:

//From A7.5.1
instance ::= <instance_name> <terminal_list> <instance_type> [<parameter_list>]
instance_name ::= <name>
instance_type := <model_name> | <subcircuit_name> | <string_parameter>

The instance_name has to be a legal name for an instance
terminal_list is a list of terminals, as defined in 4.1.16.
instance_type is the legal name of a primitive model, a user-defined model, a subcircuit or a

string_parameter. A list of primitive models is found in Appendix 2.
parameter_list is a list of parameter assignments, as defined in 4.1.15

The following statement instantiates a resistor named "R1" between terminals node1 and node2 with a
value of the parameter r of 50.

R1 (node1 node2) resistor r=50

It will not be possible to identify a device by merely having its name start with a certain letter, such as a
capacitor by having its name start with the letter C. It is necessary to identify it as a capacitor on the
instance line, if no user-defined model is used.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 35 of 83

4.2.1.1 Bus instances
Bus instances are instances which contain multiple instances, but are referenced by a single instance name
and are instantiated on a single instance statement. An instance can be made into a bus instance using
square brackets "[" and "]" after the instance name.

//From A7.5.1
bus_instance ::= <instance_name> "[" <start_integer> ":" <stop_integer> "]" <terminal_list>
<instance_type> [<parameter_list>]

instance_name is a legal instance name
start_integer and stop_integer are integer values
terminal_list is a list of terminals, as defined in 4.1.16.
instance_type is the legal name of a primitive model, a user-defined model, a subcircuit or a

string_parameter. A list of primitive models is found in Appendix 2.
parameter_list is a list of parameter assignments, as defined in 4.1.15

will instantiate a set of abs(stop_integer-stop_integer)+1 instances, which can be referenced after
the definition by:

//From A7.5.1
bus_instance_reference ::= <instance_name> "[" <start_integer> [":" <stop_integer>] "]"

instance_name is the name of a terminal which has been previously declared as a bus terminal.
If stop_integer is defined, a bus instance with abs(stop_integer-start_integer)+1 instances is

referenced, where instances start_integer through stop_integer are selected. If stop_integer is larger than
start_integer the instances will be in ascending numerical order, otherwise they will be in descending
numerical order.

If only start_integer is defined, the start_integerth instance of the bus instance is referenced, which
will be treated as if it was not a bus instance.

The following statements instantiates five resistors named "R1[i]" between terminals node1[i] and
node2[i] with a value of the parameter r of 50:

R1[1:5] (node1[1:5] node2[1:5]) resistor r=50

4.2.2 Model statements

A model defines the equations defining terminal characteristics of an instance of a device, in terms of
solution variables, instance parameter values, model parameter values, and environment parameter
values. A model statement is used to give model parameter values for the model which describes a device.
A model statement defines a name for itself (the model name):

//From A7.5.2
model ::= model <model_name> <device_type> [<parameter_list>]
model_name ::= <name>
device_type ::= <model_name> | <model_primitive> | <string_parameter>

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 36 of 83

model_primitive ::= psp | hisim | bsim3 | bsim4 | bsimsoi | hisim_hv | hicuml0 | hicuml2 | mextram504 |
vbic | sgp | resistor | capacitor | inductor | mutual_inductor | diode_cmc | juncap2 | r2_cmc | r3_cmc |
mosvar_cmc | vsource | isource | vcvs | vccs | ccvs | cccs | <string>

model is a keyword.
model_name is the legal name of this user-defined model.
device_type is a primitive, another user-defined model or a string_parameter. A list of primitive

models is found in Appendix 2. If a model calls another model, it will overwrite the values of the
parameters of the model it calls.

parameter_list is a list of parameter assignments, as defined in 4.1.15

The following statement creates a model named "Rmodel" which is a resistor with a default value of 50
for the parameter r:

model Rmodel resistor r=50

In the following example, bsim4_model_2 and bsim4_model_1 will have all parameters in common
except vto, which will be 1 for bsim4_model_2 and -0.5 for bsim4_model_1.

model bsim4_model_2 bsim4_model_1 vto=1
model bsim4_model_1 bsim4 vto=-0.5 type=n

4.2.2.1 Automatic Model Selection (Binning)

4.2.2.1.1 Lmin/Lmax/Wmin/Wmax
The language allows one model to contain multiple sets of parameters. Each of these sets is linked to a
particular bin, a certain range of width and length for the device. When a device is instantiated the first set
of parameters, for which the length and the width are within the bin, is chosen by the parser.

//From A7.5.2
binned_model ::= model <model_name> <device_type> \n
"{" \n
<binning_label> ":" [<parameter_list>] \n
{ <binning_label> ":" [<parameter_list>] \n }
"}" \n
binning_label ::= <string>

model is a keyword.
model_name is the legal name of this user-defined model.
device_type is a primitive or another user-defined model. A list of primitive models is found in

Appendix 2. If a model calls another model, it will overwrite the values of the parameters of the model it
calls.

parameter_list is a list of parameter assignments, as defined in 4.1.15
binning_label is a name for the bin. This name can contain numbers and letters only. The

binning_label needs to be unique for all bins within a certain model_name.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 37 of 83

When an instance with parameter l and w calls this model the first bin, in the order in which they are
instantiated, which meets:

lmin <= l < lmax and wmin <= w/nf < wmax or lmin == l == lmax and wmin == w/nf == wmax

Where lmin, lmax, wmin and wmax are model parameters that define the ranges for each bin and l and w
are the instance length and width and nf is the number of fingers. The bin-specific parameters will
overwrite model parameters if the device_type is another model. When the device dimensions do not fit in
any bin, an error message will be sent by the parser.

// Define models with the global parameters.
model nch bsim4
{
big: wmin=1e-6 wmax=1 lmin=0.2e-6 lmax=1 vth0=n1 u0=n11 ...
thin: wmin=0.1e-6 wmax=1e-6 lmin=0.2e-6 lmax=1 vth0=n2 u0=n21...
short: wmin=1e-6 wmax=1 lmin=0.05e-6 lmax=0.2e-6 vth0=n3 u0=n31...
...
}

M1 (n1 n2 n3 n4) nch l=0.5u w=0.5u //will have parameters from bin thin
M2 (n1 n2 n3 n4) nch l=0.08u w=2u //will have parameters from bin short

// Define models with the global parameters.
model nch_global bsim4 type=n toxe=3e-9 k1=0.5 k2=-0.05 ...
model nch nch_global
{ // All bins are derived from nch_global. No need to respecify
// type, toxe, k1, k2,... (unless you want to override them).
1: wmin=1e-6 wmax=1 lmin=0.2e-6 lmax=1 vth0=n1 u0=n11...
2: wmin=0.1e-6 wmax=1e-6 lmin=0.2e-6 lmax=1 vth0=n2 u0=n21...
3: wmin=1e-6 wmax=1 lmin=0.05e-6 lmax=0.2e-6 vth0=n3 u0=n31...
...
}

M1 (n1 n2 n3 n4) nch l=0.5u w=0.5u //vth0=n2 u0=n21 toxe=3e-9 k1=0.5 k2=-0.05
M2 (n1 n2 n3 n4) nch l=0.08u w=2u // vth0=n3 u0=n31 toxe=3e-9 k1=0.5 k2=-0.05

4.2.2.1.2 Binning using any parameter

The CMC standard Spice language supports an alternative method of binning a model. This method is
exclusive from the one described in 4.2.2.1.1, if this method is used lmin, lmax, wmin and wmax are not
used for binning.

//From A7.5.2
binned_model_2 ::= model <model_name> <device_type> \n
"{" \n
<binning_label> ":" <binning_condition> {<binning_condition>} [<parameter_list>] \n
{ <binning_label> ":"<binning_condition> {<binning_condition>} [<parameter_list>] \n }
"}" \n
binning_condition ::= <parameter_name> from <enclosure_start> <real_expression> ":"
<real_expression> <enclosure_end>
enclosure_start ::= "[" | "("
enclosure_end ::= "]" | ")"

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 38 of 83

The parser selects the first bin for which all instances of the binning_condition are evaluated as being true,
in the order in which they are instantiated. The parameter_name is a parameter on the instance line which
calls the model. The square brackets for enclosure mean that the binning_condition is met if the value of
parameter_name is equal to the real_expression. When no bin is found where all the binning conditions
are true, an error message will be sent by the parser.

With this method, the name can be overloaded to allow a different device_type to be used. The order of
evaluation occurs in the order in which the overloaded definitions are read by the parser. The
binning_label shall be unique for all bins with a certain model_name.

// Define models with the global parameters.
model nch bsim4
{
thin: w from [0.1e-6:1e-6) l from [0.2e-6:1) vth0=n2 u0=n21...
short: w from [1e-6:1) l from [0.05e-6:0.2e-6) vth0=n3 u0=n31...
...
}

model nch bsim3
{
big: w from [1e-6:1) l from [0.2e-6:1) vth0=n1 u0=n11 ...
}

M1 (n1 n2 n3 n4) nch l=0.5u w=0.5u //will have parameters from bin thin
M2 (n1 n2 n3 n4) nch l=0.08u w=2u //will have parameters from bin short
M3 (n1 n2 n3 n4) nch l=2u w=2u //will have parameters from bin big generating a device of the type bsim3

4.2.3 Subcircuit definition
A subcircuit is a representation of a group of devices, done to allow replication of the group of devices.
The subcircuit is defined by a subcircuit definition, and is placed in the netlist using an instance statement.
The subcircuit definition consists of statements beginning and ending the subcircuit definition, which
declares the name for itself (the subcircuit name):

//From A7.5.3
subcircuit ::= subckt <subckt_name> < subcircuit_terminal_list> \n
{parameters <parameter_list> \n }
{ <statement> }
end <subckt_name> \n
subckt_name ::= <name>
subcircuit_terminal_list ::= [<subcircuit_terminal_name>]
{ <delimiter> <subcircuit_terminal_name> }
 | "(" [<subcircuit_terminal_name>]{ <delimiter>
<subcircuit_terminal_name> } ")"
optional_terminal ::= <terminal_name> "(" <terminal_default> ")"
subcircuit_terminal_name ::= <terminal_name> | <optional_terminal>
terminal_default ::= <previously_defined_terminal_name> | "0" | <global> | "?"UNCONNECTED
previously_defined_terminal_name ::= <terminal_name>

subckt is a keyword to define the start of the sub-circuit.
subckt_name is a legal name of the subcircuit

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 39 of 83

subcircuit_terminal_list is a list of terminals, which can also contain optional terminals. When a
terminal is not passed to an optional terminal when the subcircuit is instantiated, the terminal defaults to
the terminal_default.

terminal_default is the name of the terminal which the terminal defaults to, when it is unconnected.
This name has to be another terminal for the subcircuit, which has been defined earlier on the line, a
global node, the ground 0, or unconnected with the keyword ?UNCONNECTED.

previously_defined_terminal_name is a terminal name which has been defined in the subcircuit
definition in front of the optional_terminal for which it is set as a default.

parameters is a keyword which allows the user to define a set of parameters which can be passed
down to the subcircuit. These parameters do not need to be assigned a default value. Multiple statements
starting with parameters are allowed. The parameter list needs to form a contiguous block right after the
subckt line. Every parameter may only be defined once.

The subcircuit can contain instances, models, variables, function definitions, other subcircuit
definitions.

end is a keyword which sets the end of the subcircuit definition

A terminal which does not have a default value is required. If no terminal is specified for such a terminal,
an error will be sent to the output. When an optional terminal defaults to being unconnected, the terminal
will be treated as if it is internal to the subcircuit.
The following example defines a subcircuit consisting of a parallel resistor R1 and capacitor C1. The
value of the resistance of R1 has to be set by the user, while the capacitance of C1 has a default of 1u.

subckt rc (node1 node2)
parameters r c=1u
R1 (node1 node2) resistor r=r
C1 (node1 node2) capacitor c=c
end rc

subckt mysubcircuit (node1 node2)
 // arg1 has a default value
 // arg2 has no default so it must be specified
 parameters arg1=3 arg2
 parameters arg3=1
 // size is a local variable to the subcircuit
 // and not a parameter that can be passed in
 size=arg2*1.5*arg3
 cmp1 (node1 node2) resistor r=arg1
 // ordinarily names can’t start with a number
 // but we can overcome those restrictions by
 // quoting any arbitrary string
 model "1n914" diode is=1e-14 cjo=1p rs=10
 ClipDiode1 (node2 0) "1n914" area=size
end mysubcircuit

inst1 (node node2) mysubcircuit arg2=30 // use default arg1

The parameter list of the subcircuit needs to be a contiguous block right behind the line which contains
the definition of the subcircuit. The simulator shall send an error message if anything but white space
separates the parameter definition from the subckt line or other parameter definitions.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 40 of 83

The following two examples result in an error message being sent:

subckt mysubcircuit (node1 node2)
 // COMMENT
 size=arg2*1.5
 parameters arg1=3 arg2 //this parameter definition can’t be separated from the
subckt line by a variable assignment
 model "1n914" diode is=1e-14 cjo=1p rs=10
 ClipDiode1 (node2 0) "1n914" area=size
end mysubcircuit

subckt mysubcircuit (node1 node2)
 parameters arg2
 model "1n914" diode is=1e-14 cjo=1p rs=10
 parameters arg1=3 //this parameter definition can’t be separated from the other
parameter definitions line by a model definition

 size=arg2*1.5
 ClipDiode1 (node2 0) "1n914" area=size
end mysubcircuit

A parameter can only be defined once in a given subcircuit. The simulator shall send an error message
when two parameters with the same name are defined in the same subcircuit. Within a subcircuit variables
and parameters share the same namespace. The simulator shall send an error message when a variable is
defined (or redefined) in a subcircuit with the same name as one of the subcircuit parameters. There is no
difference between parameters and variables at any hierarchy below the subcircuit.

The following two examples result in an error message being sent:

subckt mysubcircuit (node1 node2)
 parameters arg1=3 arg2 arg1=2 //arg1 cannot be defined twice
 model "1n914" diode is=1e-14 cjo=1p rs=10
 ClipDiode1 (node2 0) "1n914" area=1f
end mysubcircuit

subckt mysubcircuit (node1 node2)
 parameters arg2 arg1=3
 size=arg2*1.5
 arg2 = 5 //arg2 is a parameter, so it can’t be defined as a variable
 model "1n914" diode is=1e-14 cjo=1p rs=10
 ClipDiode1 (node2 0) "1n914" area=size
end mysubcircuit

A parameter does not need to have a default value. If an instance calls a subcircuit without assigning a
value to a parameter without a default value an error message shall be sent and the simulation will end.

The following example will result in an error message being sent:

subckt mysubcircuit (node1 node2)
 parameters arg1=3 arg2
 model "1n914" diode is=1e-14*arg2 cjo=1p*arg1 rs=10
 ClipDiode1 (node2 0) "1n914" area=1f
end mysubcircuit

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 41 of 83

subcircuit1 (1 0) mysubcircuit arg2=1 //is fine
subcircuit2 (2 0) mysubcircuit arg1=2 //generates an error as arg2 is undefined

The following example illustrates some of the possible options one has to instantiate a subcircuit:

4.2.4 Library definition
A library is a collection of subcircuits, models, variables and user-defined functions for which the content
changes depending on the section. The names of the subcircuits, models, variables and user-defined
functions might be the same across sections. A library file will be a file which contains sections of the
library.

The user can define a section in a library file <library_filename> with the keywords section and
endsection:

//From A7.5.4
section ::= section <section_name> \n
{ <statement> }
endsection <section_name> \n
section_name ::= <name>

section and endsection are keywords, which define the start and ending of a block which will be
executed if section_name is defined in the include_library.

section_name is the name of the section.

The section of the library can then be included in the netlist which uses the library, using the following
commands:

//From A7.5.4
include_library ::= #include """ <library_filename> """ section "=" <section_name> \n
library_filename ::= <file_name>

subckt mysubcircuit (node1 node2(node1) node3(?UNCONNECTED) node4(0))
 mosfet (node1 node2 node3 node4) bsim4
end mysubcircuit

Subcircuit instantiation Resulting device instantiation
sub1 (1 2 3 4) mysubcircuit sub1.mosfet (1 2 3 4) bsim4

sub1 (1 ?UNCONNECTED ?UNCONNECTED 4) sub1.mosfet (1 1 sub1.node3 4) bsim4

sub1 (1 2) mysubcircuit sub1.mosfet (1 2 sub1.node3 0) bsim4

sub1 (.node1(1) .node3(1)) mysubcircuit sub1.mosfet (1 1 1 0) bsim4

sub1 (.node2(1) .node3(1)) mysubcircuit Results in an error as node1 is required

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 42 of 83

#include is a keyword to include a library file
Library_filename, a quoted string, is the FILENAME of the library file, including the path, this is

dependent of the operating system, described in 4.1.21.
section is a keyword to include a particular section of the library
section_name is the name of the section, which has to be included, its name has to follow the rules

which govern names

If the section name cannot be found in the file, an error message shall be sent with a warning to the parser
output.

4.2.5 Technologies
A technology is created by bookending the file or piece of it with the keywords technology and
endtechnology. Only one technology can be active at any given point. If a new technology, is loaded, all
data from a previous technology is cleared. A technology can contain most language structures, even
those usually reserved for the top-level of the design. A technology can’t contain another technology
though.

A technology allows the user to create a local environment which is separate from the rest of the netlist.
This acts as a separate top-level hierarchy. The user can redefine global quantities such as simulator
options or global variables local to the technology. The technology inherits the global options from the
highest hierarchy of the design, but has the capability of redefining them locally, without changing them
at the higher level.

A technology will share the following namespace with other technology files and any hierarchy outside of
technologies.

Instances and bus instances
Terminals and global nodes
Preprocessor-defined macros

No new hierarchy is created when it comes to the instance names or the terminals. The topological
structure stays the same in and out of technologies; it is only the parameterization which has its own
hierarchy.

 A technology will generate its own local copy of the following namespace:

Variables, subcircuit parameters, paramsets and environment parameters
Models (also Verilog-A models), subcircuits
Functions

The technology is defined by:

//From A7.5.5
technology ::= technology <name_of_technology> \n

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 43 of 83

 [<content_of_technology>]
endtechnology <name_of_technology> \n
name_of_technology ::= <name>
content_of_technology ::= {<statement>}

technology and endtechnology are keywords used to signify the start and end of the technology
file name_of_technologyfile. The technology extends from the technology keyword to the
endtechnology line.

technology designkit1

model diodemodel diode is=1e-16
model diodemodel1 diode is=2e-16

endtechnology designkit1

technology designkit2

model diodemodel diode is=1e-15
model diodemodel2 diode is=2e-15

endtechnology designkit2

technology designkit1

d1 (1 0) diodemodel // generates a diode with is=1e-16

endtechnology designkit1

technology designkit2

d2 (2 0) diodemodel // generates a diode with is=1e-15

d3 (3 0) diodemodel1 //generates an error

endtechnology designkit2

The technology is persistent. All the sections are linked as if they form one block. The value of a variable
is constant throughout the whole technology, regardless of the location where it is defined.

technology designkit1
is1=1e-16
endtechnology designkit1

technology designkit2
is1=2e-16
model diodemodel diode is=is2
endtechnology designkit2

technology designkit1
model diodemodel diode is=is1
d1 (1 0) diodemodel // generates a diode with is=1e-16
endtechnology designkit1

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 44 of 83

The technology inherits the namespace from the toplevel in a similar way as a subcircuit does. The
difference is that it shares namespace of the instances and the terminals.

This example illustrates a possible use of technology. With the exception of the separation of environment
variables this can be done by placing everything in subcircuits. The technologies significantly reduce the
number of hierarchies which are created.

technology diode_designkit
#include diode_options //sets environment parameters and global variables
#include diodelibrary //contains diode_model
endtechnology diode_designkit

technology mosfet_designkit
#include mosfet_options //sets environment parameters and global variables
#include mosfetlibrary //contains mosfet_model
endtechnology mosfet_designkit

subckt mosdiode (drain gate source bulk)
parameters l=1u w=1u

technology mosfet_designkit
mosfet (drain gate source bulk) mosfet_model l=l w=w
endtechnology mosfet_designkit

technology diode_designkit
bd_diode (bulk drain) diode_model l=l w=w
bs_diode (bulk source) diode_model l=l w=w
endtechnology diode_designkit

end mosdiode

alternative with subcircuits:

subckt diode_subcircuit (anode cathode)
parameters l=1u w=1u
#include diode_options //sets global variables but not environment parameters
#include diodelibrary //contains diode_model
diode (anode cathode) l=l w=w
end diode_subcircuit

subckt mosfet_subcircuit (drain gate source bulk)
parameters l=1u w=1u
#include mosfet_options //sets global variables but not environment parameters
#include mosfetlibrary //contains mosfet_model
mosfet (drain gate source bulk) mosfet_model l=l w=w
endtechfile mosfet_designkit

subckt mosdiode (drain gate source bulk)
parameters l=1u w=1u

mosfet (drain gate source bulk) mosfet_subcircuit l=l w=w
bd_diode (bulk drain) diode_subcircuit l=l w=w
bs_diode (bulk source) diode_subcircuit l=l w=w

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 45 of 83

end mosdiode

The technologies allow the user a flexibility which they lose with subcircuits. One can change model or
instance parameters from the instance line without including them in the subcircuit definition.

technology diode_designkit
#include diode_options //sets environment parameters and global variables
#include diodelibrary //contains diode_model
endtechnology diode_designkit

technology mosfet_designkit
#include mosfet_options //sets environment parameters and global variables
#include mosfetlibrary //contains mosfet_model
endtechnology mosfet_designkit

subckt mosdiode (drain gate source bulk)
parameters l=1u w=1u

technology mosfet_designkit
mosfet (drain gate source bulk) mosfet_model l=l w=w vto=0.6
endtechnology mosfet_designkit

technology diode_designkit
bd_diode (bulk drain) diode_model l=l w=w
bs_diode (bulk source) diode_model l=l w=w
endtechnology diode_designkit

end mosdiode

This shall also allow users to use different TMI2 directories.

4.2.6 Global nodes
Global nodes can be defined by the user. These terminals can be referred to at any level of the hierarchy
by its global name. They can be defined at the top level of the design by:

//From A7.3.7
global ::= global <terminal_name> {<terminal_name>}

global is a keyword which defines the global nodes
terminal_name are legal names of terminals

In the following example, throughout different levels of hierarchy in the design, vdd! and Ground will
refer to the same two terminals.

global vdd! Ground

The terminal name 0 is reserved for the ground terminal and is global. This terminal is fixed at zero
voltage during simulation.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 46 of 83

To assign an alias to the ground node, the set_ground keyword can be used. The terminal names which
are defined through this will be treated as aliases to ground "0", indistinguishable from each other after
parsing.

//From A7.3.7
set_ground ::= set_ground <terminal_name> {<terminal_name>}

set_ground is a keyword which defines the global nodes
terminal_name are legal names of terminals

In the following example, throughout different levels of hierarchy in the design, ground, gnd and "0" will
refer to the same ground node.

set_ground ground gnd

4.2.7 Paramset functionality

Similar to Verilog-A, allow a set of parameters to be declared. These parameter sets are not necessarily
linked to a model or subcircuit.

//From A7.5.6
paramset ::= paramset <name_of_paramset> < paramset_type_or_paramset> \n
"{" \n
{<parameter_list> \n}
"}" \n
name_of_paramset ::= <name>
paramset_type_or_paramset ::= paramset | <paramset>

paramset is a keyword which defines a paramset
name_of_paramset is a legal name of a paramset.
paramset_type_or_paramset is either the name of a paramset which has been declared elsewhere

or the keyword paramset if this is a freshly declared paramset.
param1, value1, param2 and value2 are legal parameter names and expressions

paramset simulationoptions paramset
{
 gmin=1e-12 abstol=1e-8
}

parameter2 = simulationoptions.gmin

assigns value of 1e-12 to parameter2.

paramset extendedsimulationoptions simulationoptions
{
 reltol=1e-3
 abstol=1e-7
}

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 47 of 83

extendedsimulationoptions will contain 3 parameters:
gmin=1e-12
reltol=1e-3
abstol=1e-7

4.2.8 Conditional instantation

The user can conditionally instantiate parts of the netlist using if/then/else statements. The condition has
to be resolvable by the parser during netlist parsing and flattening. It can depend on variables, user-
defined function, but not on anything which can only be resolved during simulation (e.g. voltages or
currents in the circuit). In contrast with the preprocessor command #if (4.1.18), the conditional expression
has access to netlist variables and namespace.

//From A7.5.7
conditional_instantiation ::= if "(" <boolean_expression> ")" \n
"{" \n
{ <statement> }
"}" \n
[else \n
"{"
 { <statement> }
"}" \n]

if is a keyword, the boolean_expression is an expression which has a Boolean value, and which
can be evaluated by the parser. Everything between the curly braces "{" and "}" will be instantiated if the
value of this expression is true. Otherwise, it will be ignored.

else is a keyword, everything between the curly braces "{" and "}" will be instantiated if the value
of boolean_expression is false.

subckt someThing (node1 node2)
parameters arg1=10 arg2=3
 if (arg2 == 3) {
 R1 (node1 node2) resistor R=arg1
 } else {
 C1 (node1 node2) capacitor C=arg1
 }
end someThing

4.2.9 Environment parameters (Simulator options)
Simulator options or environment parameter are typically common to many models. They affect model
equations but are not listed as one of the model parameters. Appendix 3 contains the accepted simulator
options and their default values when they are undefined. They can be assigned a value at any point in the
netlist, they do not have to be defined and their names are reserved keywords. A warning message shall be
sent, when a global option is redefined, the first encountered value shall be used. As an exception, a
technology can have its own local global options or nodes.

//From A7.5.8

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 48 of 83

environment_parameter ::= <environment_parameter_name> "=" <expression>
environment_parameter_name ::= scale | temperature | global_seed | truncate

environment_parameter_name is the name of an option, the list is in Appendix 3
expression is a numerical expression, which can be evaluated by the parser

In the following example, temperature is 25 and a warning message shall have been sent about the
redefinition of temperature.

temperature=25
…
model…
instance…
…
temperature=30
…
subckt my_res (node0 node1)
 rpw1 (node0 node1) resistor r=100*1e-3*(temperature-25)
end my_res

And in the following case, temperature is here whatever value the environment parameter temperature has.

subckt my_res (node0 node1)
 rpw1 (node0 node1) resistor r=100*1e-3*(temperature-25)
end my_res

Tnom has been a global option in most netlist languages. This is not a good practice, since it is better for
the modeling engineer to define tnom on the model level. This is why tnom has been removed as a
standardsimulator option. It can still be used as a non-standard environment parameter, as described in the
next section.

Global_seed and truncate are two global options which are used in statistical analysis. Their usage will be
explained in section 4.2.10.

4.2.9.1 Non-standard environment parameters
The user can provide other simulator-specific environment parameters by using the reserved paramset
simulator_options. If the simulator does not recognize the specific option it can be ignored by the parser.

//From A7.5.8
simulator_options ::= simulator_options "." <option_name> \n
<option_name> ::= <string>

It does not seem to be a good idea to include simulator-specific options in a design kit, but the
functionality must exist.

The following statement allows the user to set the simulator option gmin to 1e-14 (if the simulator
supports this option). If it does not recognize such option, the parser can ignore the statement.

simulator_options.gmin = 1e-14

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 49 of 83

4.2.10 Statistical analysis
The CMC language supports a method to add statistical variation to the value of a parameter or variable.
The language uses a syntax close to the Verilog-A specification. The syntax is largely based on the one in
section 9.13.2 of the Verilog-AMS LRM2.3 [1]. The C-code which describes the function can be found in
Section 17.9.3 of IEEE std 1364-2005 Verilog HDL.

The following functions are supported:
For all these functions seed is a number with an integer value and is used to give consistent results for
debugging. If the seed remains constant, the random numbers shall not change from run-to-run. If the seed
parameter is omitted then the simulator picks a seed which is different than that of any other distribution
in the netlist. The environment parameter global_seed can be defined to make the process of selecting the
undefined seeds, consistent from run-to-run. If the environment parameter global_seed is not set, a
random seed is assigned which shall vary from run-to-run.

The type is a string which is either "global" or "instance". If it is "global", the value is assigned once per
Monte Carlo run, but when it is "instance" then a new random value is generated for each instance which
uses this value and for every Monte Carlo run. This value can be omitted and it will default to global in
this case.

//From A7.3.3.2
statistical_functions ::= rdist_uniform | rdist_normal | rdist_lognormal | rdist_exponential | rdist_poisson |
rdist_chi_square | rdist_t | rdist_erlang | arandom | rselect
rdist_uniform ::= rdist_uniform "(" [<seed>] "," <start> "," <end_real> ["," <type>] ")"
seed ::= <integer_number>
start_real ::= <real_expression>
end_real ::= <real_expression>
type ::= global | instance

Uniform distribution, start_real has to be smaller than end_real or an error message will be sent. The
mean value will be its center (0.5*(start+end)). This function is called uniform in IEEE std 1364-2005.

//From A7.3.3.2
rdist_normal ::= rdist_normal "(" [<seed>] "," <mean> "," <standard_deviation> ["," <type> [","
<truncate>]] ")"
mean ::= <real_expression>
standard_deviation ::= <real_expression>
truncate ::= <real_number>

Gaussian distribution, defined by its mean and standard_deviation (real numbers). The mean value will be
the value of mean. The parameter truncate is used to define the maximum number of standard deviations a
value can deviate from the mean. If this parameter is omitted, the value of the environment parameter
truncate is used. If the truncate parameter is present, the type parameter has to be defined. This function is
called normal in IEEE std 1364-2005.

//From A7.3.3.2

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 50 of 83

rdist_lognormal ::= rdist_lognormal "(" [<seed>] "," <mean> "," <standard_deviation> ["," <type>]
")"

Lognormal distribution (or Galton distribution), defined by its mean and standard_deviation (real
numbers). The normal logarithm of this distribution will be normally distributed. The mean value will be
the value of mean. This function is not present in IEEE std 1364-2005. The probability density of this
distribution is given by:

f(x)=1/(x*standard_deviation*sqrt(2*pi))*exp(-(lnx-mean)^2/(2*standard_deviation^2))

//From A7.3.3.2
rdist_exponential ::= rdist_exponential "(" [<seed>] "," <mean> ["," <type>] ")"

Exponential distribution, defined by its mean, which shall be a real number larger than 0. The mean value
will be the value of mean. This function is called exponential in IEEE std 1364-2005.

//From A7.3.3.2
rdist_poisson ::= rdist_poisson "(" [<seed>] "," <mean> ["," <type>] ")"

Poisson distribution, defined by its mean. The mean value will be the value of mean, which shall be a real
number larger than 0. This function is called poisson in IEEE std 1364-2005.

//From A7.3.3.2
rdist_chi_square ::= rdist_chi_square "(" [<seed>] "," <degrees_of_freedom> ["," <type>] ")"
degrees_of_freedom ::= <real_expression>

Chi square distribution, defined by its degrees_of_freedom, which shall be a real number larger than 0.
The mean value will be the value of the degrees of freedom. This function is called chi_square in IEEE
std 1364-2005.

//From A7.3.3.1
rdist_t ::= rdist_t "(" [<seed>] "," <degrees_of_freedom> ["," <type>] ")"

Student’s T-distribution, defined by its degrees_of_freedom, which shall be a real number larger than 0.
The mean value will be 0 (though it technically is undefined if degrees of freedom are smaller than or
equal to 1). This function is called t in IEEE std 1364-2005.

//From A7.3.3.2
rdist_erlang ::= rdist_erlang "(" [<seed>] "," <k_stage> "," <mean> ["," <type>] ")"
k_stage ::= <real_expression>

Erlang distribution, defined by its k_stage and mean, which shall be real numbers larger than 0. The mean
value will be the value of mean. This function is called erlang in IEEE std 1364-2005.

If statistical analysis is not supported by the analysis which is performed or is disabled by the user, then
the function will return the mean value of the function.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 51 of 83

tox_mmglobal = rdist_normal(0,0,0.02,"global")
tox_mmslope = rdist_normal(1,0,5e-3,"instance")
model lvnfet nmos
+tox = 5.0e-009*tox_mmglobal + 5.00e-9*tox_mmslope/
sqrt(sqrt(E(l)*E(w)*E(mfactor))

global_seed=1
tox_mmglobal = rdist_normal(,0,0.02,"global") //Parser uses global_seed to set seed
tox_mmslope = rdist_normal(,0,5e-3,"instance")
model lvnfet nmos
+tox = 5.0e-009*tox_mmglobal + 5.00e-9*tox_mmslope/
sqrt(sqrt(E(l)*E(w)*E(mfactor))

//From A7.3.3.2
arandom ::= arandom "(" [<seed>] ["," <type>] ")"

returns a real number with random 32-bit integer value which can be positive or negative, similar to the
Verilog-A $arandom function. The same rules for seed and type apply as for the other distributions.

//From A7.3.3.2
rselect ::= rselect "(" [<seed>] "," <var1> "," <var2> ["," <type>] ")"
var1 ::= <expression>
var2 ::= <expression>

randomly selects either the value of var1 or var2. Var1 and var2 can be dependent on an underlying
distribution. The type of rselect only governs the choice between var1 and var2 and not the type of any
underlying distributions on which they might depend.

The right hand side is equivalent to the left hand side in the following example:
x = rselect(seed,var1,var2,type) random_number = random(seed,type)

selector = random_number -
+2.0*int(random_number/2)
x=selector*var1+(1-selector)*var2

4.2.10.1 Correlations
To implement correlated distributions it is recommended to write out the distributions as combinations of
underlying distributions.

As is shown in the following example, it is possible to create two parameters that are correlated by writing
them out as combinations of three uncorrelated distributions. Care has to be taken about the standard
deviation of the resulting distribution and the correlation coefficients. The correlation between these two
parameters is 0.4 and the standard deviation of each is 1.

x=rdist_normal (0 , 0, 1, "instance")
y=rdist_normal (1 , 0, 1, "instance")
z=rdist_normal (2 , 0, 1, "instance")

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 52 of 83

parameter1 = 0.4*x+0.9165*y //stdev= sqrt(0.4*0.4+0.9165*0.9165)=1
parameter2 = 0.4*x+0.9165*z

As is shown in the following example, the same can be accomplished with 3 parameters. Create three
parameters with a mean of 0 and a standard deviation of 1, parameter1, parameter2 and parameter3 where
parameter1 and parameter2 have a correlation coefficient of 0.2, parameter2 and parameter3 have a
correlation coefficient of 0.1 and parameter1 and parameter3 have a correlation coefficient of 0.3:

x=rdist_normal (0 , 0, 1, "instance")
y=rdist_normal (1 , 0, 1, "instance")
z=rdist_normal (2 , 0, 1, "instance")
w=rdist_normal (3 , 0, 1, "instance")
v=rdist_normal (4 , 0, 1, "instance")
u=rdist_normal (5 , 0, 1, "instance")
parameter1 = 0.2*x+0.3*y+0.93274*w //stdev= sqrt(0.2^2+0.3^2+0.93274^2)=1
parameter2 = 0.2*x+0.1*z+0.97468*v //stdev= sqrt(0.2^2+0.3^2+0.97468^2)=1
parameter2 = 0.1*z+0.3*y+0.94868*u //stdev= sqrt(0.2^2+0.3^2+0.94868^2)=1

4.3 Hierarchy, scoping and referencing
Subcircuits can be nested, which means that subcircuits can contain other subcircuits. Variables,
parameters, model cards, functions, terminals, subcircuits only exist within and below the scope of the
subcircuit in which they are defined.

4.3.1 Referencing outside of scope
There are methods of referencing a subcircuit, terminal, device or model card which has been defined
outside of its scope. It is only possible to reference elements within the current or at a lower level of
hierarchy.

4.3.1.1 Terminal
The CMC standard language allows one to reference a terminal terminal_name in another subcircuit
subckt_name, through the following call:

//From A7.3.7
terminal_reference ::= [<subckt_name> "."] <terminal_name>

subckt_name is a legal name of a subcircuit within the current scope.
terminal_name is a legal name of a node defined within the scope of subckt_name.

Cp1 (someNode CMP2.X1.node2) capacitor C=1.5pF

4.3.1.2 Instance
The CMC standard language allows one to reference an instance instance_name in a subcircuit
subckt_name, through the following call:

//From A7.5.1

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 53 of 83

instance_reference ::= [<subckt_name> "."] <instance_name>

subckt_name is a legal name of a subcircuit within the current scope.
instance_name is a legal name of an instance defined within the scope of subckt_name.

mirror (watchI 0) ccvs Probe=CMP2.X1.R2

The circuit below has two distinct nodes: someNode and CMP2.X1.node2 and two components:
CMP2.X1.R1 and CMP2.X1.R2.

subckt mySubCircuit (node1)
 R1 (node1 node2) resistor r=50
 R2 (node2 0) resistor r=50
end mySubCircuit

subckt AnotherOne (node1)
 X1 (node1) mySubcircuit
end AnotherOne

CMP2 (someNode) AnotherOne

4.3.1.3 Alias functionality

The CMC language allows the user to create an alias for a subcircuit or an instance, so it can be referred
to by this alias instead of its longer name. This is a direct text-based replacement.

//From A7.5.3
alias ::= alias <alias_name> "=" <name>
alias_name ::= <name>

alias is a keyword which allows the user to set an alias for a valid instance or subcircuit within the
scope.

alias_name is the name of the alias which can be used to refer to name with in the current scope.
name is the name of an instance or subcircuit within the current scope

The following statement allows x1.i1.amp1.n1 can now be referred to as amplifier.n1

alias amplifier=x1.i1.amp1

4.3.2 Hierarchical variables
Variables can be defined hierarchically. Definitions inside a subcircuit hide global definitions with the
same name. Variables defined at a higher level can be referenced inside a subcircuit. The multiple levels
of hierarchy apply for subcircuits within subcircuits.

When a subcircuit is created, it inherits the namespace from the hierarchy in which it is created. If this
hierarchy was a subcircuit, the parameters will be treated as if they were variables. But all variables and
their values are now a copy local to the subcircuit. By changing the variable within the subcircuit, one

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 54 of 83

does not change the variable within the hierarchy in which the subcircuit was instantiated, or any higher
level. It overwrites the value it inherited from a hierarchical level.
If the instance line which generates the subcircuit, contains parameter assignments these will be used to
overwrite the parameter assignment within the scope of the subcircuit. Parameters are defined by the
keyword parameters, according to the rules in 4.2.3. A variable has one value for a given level of
hierarchy.

//Global Nodes
global vdd! Ground
//end Global Nodes

//Technology Parameters
tox=value1 vth0=value2
tparam=v1
//end Technology Parameters

subckt subckt_name (node1 node2 …)
//Subcircuit Instance Parameters
parameters mismatch1=mvalue1 mismatch2=mvalue2
parameters tparam=v3
parameter1=x parameter2=y tparam=v2
//end Subcircuit Instance Parameters
//Variables
… components here …
//end Subcircuit Parameters

//Model Instance Parameters
modelcall (node1 node2 node3 node4) nmos l=0.2u w=0.3u
//end Model Instance Parameters

end subckt_name

model nmos device_type
//Model Parameters
+ eta0=1.2 ngate=0.1
+ nfactor=2.3 ku0=2
+ toxe=tparam
//end Model Parameters
// Simulator Parameters (Switches)
+ updatelevel=1
// end Simulator Parameters

var1=1.5
var2=3.5e-6

subckt AnotherThing (node1)
 var1=2.5 // local definition of var1 hides global
 R1 (node1 0) resistor R=var1 // this is a 2.5 Ohm resistor
 C1 (node1 0) capacitor C=var2 // this is a 3.5 uF capacitor
end AnotherThing

x=3

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 55 of 83

subckt subckt1 (node1)
 x=4 // local definition of x hides global
 subckt subckt2 (node1)
 R1 (node1 0) resistor R=x
 end subckt2
end subckt1

subckt subckt3 (node1)
 parameters x=6
 R1 (node1) subckt1.subckt2 //generates a resistor with R=4
end subckt3

In the following example, sub1.r1=333, sup1.r2=2, sub2.xarf.r1=42,sub2.xarf.r2=43,
sub3.xarf.r1=42,sub3.xarf.r2=31

x=3

subckt subckt1 (node1)
 parameters x=5
 R1 (node1 0) resistor r=x
end subckt1

R1 (node1) subckt1 x=7 //generates a resistor with R=7
R2 (node1) subckt1//generates a resistor with R=5

p1=3 pp1=1 p2=2
sub1 s1 p4=8
sub2 s2 p2=43
sub3 s2 p2=31
subckt s1

 parameters p1=333 p3=5 p4=p1+p3 p5=p1+p3
 r1 (1 0) resistor r=p1
 r2 (1 0) resistor r=p2

end s1
subckt s2

 parameters p2=17 pp1=42
 xarf s1 p1=pp1
end s2

4.3.3 Scoping of variables
It is possible to define variables with the same name at different levels of hierarchy. A variable is valid
within its own scope and is inherited by any subcircuit instantiated within that scope, unless a variable
with the same name is defined in this lower scope.

//Global Variables
tox=value1 vth0=value2
tparam=v1 ---------------------------------------SCOPE LEVEL 1
//end Global Variables

subckt subckt_name (node1 node2 …)
parameter1=x parameter2=y tparam=v2 --------------SCOPE LEVEL 2

//tparam=v3 WOULD FLAG an error
… components here …

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 56 of 83

modelcall (node1 node2 node3 node4) nmos l=0.2u w=0.3u
end subckt_name

model nmos device_type
+ eta0=1.2 ngate=0.1
+ nfactor=2.3 ku0=2
+ toxe=tparam //TOXE=v1

//Global Variables
tox=value1 vth0=value2
tparam=v1 ---------------------------------------SCOPE LEVEL 1
//end Global Variables

subckt subckt_name (node1 node2 …)
parameter1=x parameter2=y tparam=v2 --------------SCOPE LEVEL 2

… components here …

modelcall (node1 node2 node3 node4) nmos l=0.2u w=0.3u

model nmos device_type
+ eta0=1.2 ngate=0.1
+ nfactor=2.3 ku0=2
+ toxe=tparam //TOXE=v2 or whatever instance parameter is passed onto subckt when it
is called from the instance line

end subckt_name

4.3.4 Parallel devices
The CMC language allows the user to place parallel devices in the netlist on one instance line, using the
multiplicity factor, mfactor. Every instance has a parameter mfactor associated with it. If no mfactor is
specified it is 1, but if the instance is instantiated by a subcircuit, the mfactor of all instance statements in
the subcircuit are multiplied by this mfactor when flattening.

//From A7.5.1
mfactor ::= mfactor "=" <real_expression>

The netlist on the left hand side will read to the parser like the one on the right hand side:
subckt res1 (in out)
 r1 (in out) resistor r=50 mfactor=10
 r2 (in out) resistor r=20
end res1
r1 (1 2) res1 mfactor=2

r1.r1 (1 2) resistor r=50 mfactor=20
r1.r2 (1 2) resistor r=20 mfactor=2

This mfactor can be used as a variable in any expression. It will use the mfactor of the statement it is
found. If it is not an instance statement, it will treat the line as an instance statement to find the correct
mfactor.

subckt res1 (in out)
 test=mfactor*2 //test is 4 here in r1 instantiation

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 57 of 83

 r1 (in out) resistor r=50 mfactor=10 dtemp=mfactor*1.5 //dtemp is 30 here
 r2 (in out) resistor r=20 dtemp=mfactor*1.5 //dtemp is 3 here
end res1

r1 (1 2) res1 mfactor=2
test=mfactor*2 //test is 2 here

4.3.5 Parameter scoping
The CMC language has different hierarchies of parameters which can be explicitly passed down to a
model or a subcircuit.

4.3.5.1 Instance and model parameters
In traditional SPICE languages, there is a difference between instance and model parameters (this can
improve simulation performance). In Verilog-A, model and instance parameters are all model parameters
(similarly how parameters in a subcircuit work).

There is a potential benefit to being able to separate instance and model parameters. But there is a need to
be able to overwrite a model parameter with an instance parameter. Similarly, there is a need to evaluate
model parameters using the instance parameters of the instance which calls it.

To preserve the benefits of having instance and model parameters, instance parameters do not overwrite
model parameters. The parser does not necessarily know which parameter is an instance and which is a
model parameter. This functionality can be replicated easily by creating a model of a model overwriting
just the parameters which are needed. When the user tries to overwrite a model parameter on the instance
line, the simulator may send a warning to the output.

In the following example, resistor is a model with instance parameters r, l and w, while rsh is a model
parameter, all their default values are 0. Resistor1 will be instantiated with the following values for its
parameters: r=10, l=2u, w=0 and rsh=5. Resistor2 will be instantiated with the following values for its
parameters: r=0, l=1u, w=2u and rsh=1.

Resistor1 (node1 node2) resistormodel1 r=10
model resistormodel1 resistormodel rsh=5
Resistor2 (node1 node2) resistormodel l=1u w=2u

model resistormodel resistor rsh=1 l=2u

The parameters on the instance line which calls a particular model card or subcircuit can be accessed
within a certain model card through the following syntax:

//From A7.3.6
instance_parameter_call ::= E "(" <parametername> ")"

returns the value of the instance parameter parametername, if there is no such parameter
parametername on the instance line an error is returned, where:

E is the function name which allows one to use an instance parameter within a model definition.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 58 of 83

parametername is the name of the instance parameter, which has to be evaluated

This is equivalent to replacing the model by a subcircuit with the model embedded. The advantage of this
approach is that the subcircuit approach requires all instance parameters, even those not used in the
calculation to be defined in the subcircuit.

In the following example both netlists are equivalent:

instance1 (node1 node2) model_name
+y=value1
model model_name model_type x=E(y)

instance1 (node1 node2) model_name
+y=value1
subckt modelname (node1 node2)
parameters y
instance (node1 node2) model_name_sub y=y
model model_name_sub model_type x=y
end modelname

In the following example, E(l) means to evaluate the instance parameter called "l" on every single element
of this model type, where E(myw) means to evaluate the instance parameter called "myw" on every single
element of this model type and E(mfactor) means to evaluate the mfactor on every single element of this
model type (see section 4.3.4). Both netlist are equivalent, except that on the left hand side no instance
parameters have to be defined in the subcircuit definition

model polyres resistor
+rsh=80*0.40/(sqrt(E(l)*E(myw)*E(mfactor))

subckt polyres (node1 node2)
parameters l myw
r1 (node1 node2) model_name l=l myw=myw
model model_name resistor
+rsh=80*0.40*/sqrt(l*myw*mfactor)
end polyres

4.3.5.2 Renaming parameters

The rename function can be used in a model card to rename the name of an instance or model parameter.
This function is performed before any other expressions are evaluated and once a parameter has been
renamed, the original name does not exist in the model card or on the instance line. When the parameter
which needs to be renamed does not exist, this function is ignored. If the parameter which has to be
renamed is an instance parameter, this can be identified by using the E() function. The rename functions
are executed in the order they are found.

//From A7.3.6
rename_function::= rename "(" <instance_parameter_call> | <parameter_name> "," <parameter_name>
")"

The name of the first argument will be replaced by the name given by the second argument in the
function call, when the model and instance parameters are passed to the device.

In the following example both netlists are equivalent
model nch bsim4 rename(E(length), l) model nch bsim4 vth0=0.66

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 59 of 83

+rename(vth, vth0) vth=0.66
M1 (d g s b) nch length=10u width=5u

M1 (d g s b) nch l=10u width=5u

model nch bsim4 rename(E(length), l)
+rename(E(width), w) rename(E(width), w2)
+vth0=0.66
M1 (d g s b) nch length=10u width=5u

model nch bsim4 vth0=0.66
M1 (d g s b) nch l=10u w=5u

While the following example leads to an error sent to the output, as E(width) does not exist anymore

model nch bsim4 RENAME(E(length), l) RENAME(E(width), w) vth0=0.66+E(width)*0.0001
M1 (d g s b) nch length=10u width=5u

This can be used to remap a model card to a new version or model:
model bjtmodel hicuml2 cjci0=0.01u cjei0=0.01u

could be remapped to
model bjtmodel mextram504_remap
model mextram504_remap mextram504 rename(cjci0, cjc) rename(cjei0, cje)

4.3.6 Signal Access Functions
A voltage at a terminal can be passed to an instance or a subcircuit by passing the terminal name to the
TERMINAL LIST. This can be done following the rules set in 4.3.1.2.
A current through a branch can be passed to an instance or a subcircuit by passing the name of the
corresponding voltage source, current probe, linear resistor or inductor to the instance as a parameter. The
instance is referenced following the rules of 4.3.1.3.

resistor1 (node1 node2) r=1
cccs1 (node2 0) cccs probe=resistor1 //passes the current through resistor1 to cccs1
vcvs1 (node1 0 node1 node2) vcvs //passes the voltages at nodes node1 and node2 to
vcvs1

4.4 Model definitions
Several models have not been standardized by the CMC, yet are part of design kits. Following is a
description of models in Verilog-A or an equation/parameter list. We need to define at least inductor,
mutual inductor and vcvs, vccs, cccs, ccvs with standard gain, polynomial dependence, piecewise linear
and with a delay, we may also define the MOSFET level 1, the Gummel-Poon BJT and other models
which are still used, but have no CMC standard. This work will be postponed until after the first version
of the language has been standardized.

5 Future Work
After the language has been specified, the committee will work on other issues regarding netlists. One of
these issues will be to standardize .measure statements. If it can be demonstrated that such statements are
used within design kits, we will add them to the current work. Examples of this statement and its intended
behavior are welcomed.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 60 of 83

Several models have not been standardized by the CMC, yet are part of design kits. Following is a
description of models in Verilog-A or an equation/parameter list. We need to define at least inductor,
mutual inductor and vcvs, vccs, cccs, ccvs with standard gain, polynomial dependence, piecewise linear
and with a delay, we will also define the MOSFET level 1, the Gummel-Poon BJT and other models
which are still used, but have no CMC standard. This work will be postponed until after the first version
of the language has been standardized.
The language may define all the output capacitances and resistors defined by model developers like PSP,
BSIM and HSIM as agreed to by CMC. We may write a standardized definition for resistance and output
capacitance given certain types of analysis, and a mechanism to access them.
A QA suite may be made to test the implementation of the language features in different simulators. This
may be released together with the standard.
The standard may consider adding directives which could be used to identify which parts of the netlists
shall be encrypted by the encryption tool.
The elaboration of the language will be defined after the first version of the language has been approved
for standardization. The process of defining this elaboration will happen within the committee in a way
the parser developers can design the parsers while they contribute to the elaboration scheme.
The standard may consider adding functionality to import a C-function to a netlist as a user-defined
function. The committee may consider doing this both as a stand-alone compiled object and as
uncompiled C-code.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 61 of 83

6 References

[1] Accellera Verilog-AMS Language Reference Manual, version 2.3 [Online]:
http://www.accellera.org/activities/verilog-ams/VAMS-LRM-2-3.pdf

[2] Spectre User's Guide, A Frequency-Domain Simulator For Nonlinear Circuits, Program by Kenneth S. Kundert and
Alberto Sangiovanni-Vincentelli, Manual by Kenneth S. Kundert and Eric Copeland, Version 1a1, August 1988

[3] Agilent Technologies, Agilent ADS 2009A – Using Circuit Simulators, chapter 5 “ADS Simulator Input Syntax”, 2009

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 62 of 83

Appendix 1. Defined Unit Prefixes

Units Prefix Multiplier

a 10-18

f 10-15

p 10-12

n 10-9

u 10-6

m 10-3

K, k 103

M 106

G 109

T 1012

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 63 of 83

Appendix 2. Defined Names for Models

Name of Model Identifier Name of Model Identifier

PSP psp diode diode_cmc

HiSIM2 hisim JUNCAP2 juncap2

BSIM3 bsim3 CMC Two-terminal Resistor r2_cmc

BSIM4 bsim4 CMC Three-terminal Resistor r3_cmc

BSIMSOI bsimsoi CMC MOS Varactor mosvar_cmc

HiSIM_HV hisim_hv independent voltage source vsource

HiCUM Level 0

HiCUM Level 2

hicuml0

hicuml2

independent current source isource

MEXTRAM mextram voltage-controlled voltage source vcvs

VBIC vbic voltage-controlled current source vccs

SPICE Gummel-Poon sgp current-controlled voltage source ccvs

General Resistor resistor current-controlled current source cccs

General Capacitor capacitor

General Inductor inductor

Mutual Inductor mutual_inductor

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 64 of 83

Appendix 3. Defined Simulator Parameters and Options

Name Description

scale Geometry scaling factor for instance parameters (default 1.0)

temperature Circuit temperature (default 25)

global_seed Seed value to base undefined seed values on (default undefined)

truncate Default value of the maximum number of standard deviations a
value of a normal distribution can deviate from the mean (default 6)

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 65 of 83

Appendix 4: Definitions

device: A representation of a physical device or property, such as a resistor, flux linkage, capacitor,
MOSFET, bipolar transistor, etc. A device is identified by a string, the device name, denoting the type of
device, e.g. BSIM461, VBIC95, resistor. Multiple instances of a device may be created in a netlist. The
model for the device is determined by a set of equations describing its behavior. The behavior of a device
instance is determined by solution variables, instance parameter values, model parameter values, and
environment parameter values. (Devices are often 'built-in' to the simulator, unchangeable by the user
other than to change the parameters which feed into it.)

model: The equations defining terminal characteristics of an instance of a device, in terms of solution
variables, instance parameter values, model parameter values, and environment parameter values.

model statement: A statement used to give model parameter values for the model which describes a
device. A model statement has a name for itself (the model name), a device name (denoting the device
this statement parameterizes), and a series of model parameter values given as keyword=value pairs.

model parameters: A list of parameters used in the model equations for a particular device. The model
parameter associated with a keyword and is given a value using a keyword=value pair on a model
statement. E.g. `phib' might be a keyword associated with the bulk potential model parameter in a
MOSFET model.

instance: A particular placement of a device or subcircuit, represented in the netlist by an instance
statement.

instance statement: A statement associated with a particular instance. An instance statement has a name
for itself (the instance name), a terminal list which gives the nodes to which it is connected, a reference
name, and instance parameters given as keyword=value pairs. The reference name may be a device
name in the case of a simple device using default model parameters, a model name referencing a model
statement giving model parameter values used in the device's model, or a subcircuit name referring to
a subcircuit definition.

instance parameters: A list of parameters associated with a particular instance of a device or subcircuit.
If the instance is a placement of a device, the parameter is typically used in the model equations for the
device. If the instance is a placement of a subcircuit, the parameter is typically used in expressions within
the subcircuit definition. Each parameter is associated with a keyword and is given a value using a
keyword=value pair on an instance statement.

subcircuit: A representation of a group of devices, done to allow replication of the group of devices. The
subcircuit is defined by a subcircuit definition, and is placed in the netlist using an instance statement.

subcircuit definition: A subcircuit definition consists of statements beginning and ending the subcircuit
definition, and containing one or more instance statements, model statements, or subcircuit definitions.
The statement beginning a subcircuit definition has a name for itself (the subcircuit name), a list of zero
or more ports (which are replaced by terminals from the subcircuit instance), and an optional list of
subcircuit parameters as keyword=value pairs, where the value is a default used if a value is not given on
a subcircuit instance statement.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 66 of 83

environment parameter: A parameter, typically common to many models, which affects model
equations but is not listed as one of the model parameters. Historical examples of these would be gmin,
temp, etc.

delimiter: are characters which are used to separate expressions in the language file. It can be one or
more blanks or tabs, a comma or a comment. Multiple delimiters will be treated as one by the parser,
except if they are a part of a string.

terminal: single node of the net, or collections of nodes (bus terminal)

language file/netlist: text which can be read by the parser which describes the devices, models and their
topological connections for a design.

statement: a full line in the netlist, this contains all text and white space until a line break.

comment: text in the netlist which is ignored by the parser and only serves to illuminate the design to a
reader.

string: ordered collection of characters, they can be used to give names to objects.

variables: symbols for values which can be used within expressions in the netlist.

parameters: are symbols for values which are used to pass a value to an instance/model/subcircuit.

bus terminal: collection of terminals, identified by a single name and their order

user-defined model: Model which has not been defined by the EDA tool, but by the user.

library: Collection of models, usually divided in sections. The sections tend to differ in the values of the
variables that are used.

technology: Netlist which contains information and models, functions and variables. The technology
allows the namespace of these to be separate from that of the rest of the netlist who calls it.

bus instance: collection of instances which are connected by bus terminals to the rest of the design.

parser output: text which is written out to the screen or a text file (log file) by the parser of a particular
tool. The exact location of the log file (if present) or its format or content are dependent on the simulation
tool.

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 67 of 83

Appendix 5: Reserved keywords

The following keywords are reserved in the CMC standard language and cannot be used as a name.

#define
#elif
#else
#endif
#if
#ifdef
#ifndef
#include
#undef
alias
abs
acos
acosh
arandom
asin
asinh
atan
atan2
atanh
ceiling
cos
dB
else
concat
cosh
E
end
encrypted
exp
explim
endencrypted
endif
endsection
endtechnology
error
false
fatal
floor
for
global
if
import
int

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 68 of 83

ln
log10
lower
max
min
model
nint
parameters
pow
range_check
rdist_chi_square
rdist_erlang
rdist_exponential
rdist_lognormal
rdist_poisson
rdist_normal
rdist_t
redefine
rename
return
rselect
section
set_ground
simulatorlanguage
sign
sin
sinh
sqrt
subckt
tan
tanh
technology
then
true
upper
warning
while

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 69 of 83

Appendix 6: Reserved macros

The following macros are reserved in the CMC standard language and cannot be defined by the user, but
are defined by the simulator.

_LINUX
_MAJOR_VERSION
_MINOR_VERSION
_SOLARIS
_WINDOWS

Different EDA vendors shall define their own reserved macro which can be used to identify the
simulation tool that is running. These macros shall start with "_".

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 70 of 83

Appendix 7: Formal syntax definitions

A7.1 Netlist text

statement::= <statement_line> \n
{ "+" <statement_line> \n | \n | <comment> \n}

statement_line::= {<printable_ASCII_character> | \t }

printable_ASCII_character ::= ASCII : 0x20-0x7E

comment ::= one_line_comment | multi_line_comment

one_line_comment ::= "/" "/"{ <printable_ASCII_character> } \n

multi_line_comment ::= "/" "*" { <multi_line_text> } "*""/"

multi_line_text ::= <printable_ASCII_character> | \n

delimiter ::= { " " | \t | "," }

A7.2 Data-types

A7.2.1 Strings

string ::= "<text_of_string>"

text_of_string ::= {<character>}

character ::= <printable_ASCII_character> | <ASCII_code> | \n | \t | "\" "\" | "\" """

ASCII_code ::= "\"<octal_number><octal_number><octal_number>

octal_number ::= 0|1|2|3|4|5|6|7

select_string ::= <string_variable_name> "(" <i> ":" <j> ")"

string_variable_name := <name>

i ::= <integer_number>

j ::= <integer_number>

A7.2.2 Numbers

real_number ::= [<sign>]<unsigned_number>.<unsigned_number> |
[<sign>]<unsigned_number>[.<unsigned_number>]<exponential>[<sign>]<unsigned_number> |

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 71 of 83

[<sign>]<unsigned_number>[.<unsigned_number>]<scalefactor>

sign ::= "+" | "-"

unsigned_number ::= <decimal_number>{<decimal_number>}

decimal_number ::= 0|1|2|3|4|5|6|7|8|9

exponential ::= e | E

scalefactor ::= a | f | p | n | u | m | k | K | M | G | T

integer_number ::= [<sign>]<unsigned_number> | int "(" <real_expression> ")"

boolean_value ::= true | false | <real_number>

A7.2.3 Vectors

vector ::= real_vector | boolean_vector | string_vector

real_vector ::= "[" <real_expression> { "," <real_expression> } "]"

boolean_vector ::= "[" <boolean_expression> | { "," <boolean_expression> } "]"

string_vector ::= "[" <string_expression { "," <string_expression> } "]"

A7.3 Language constructs

A7.3.1 Identifiers

name ::= <unquoted_name> | <quoted_name> excluding <keyword>

unquoted_name ::= <starting_name_character> { <name_character> }

quoted_name ::= """ <printable_ASCII_character> { <printable_ASCII_character> } """

name_character ::= a-z | A-Z | 0-9 | "_" | "#" | "!"

starting_name_character ::= a-z | A-Z | 0-9 | "_" | "!"

A7.3.2 Operators

unary_operator ::= "-" | "+"

binary_operator ::= "+" | "-" | "*" | "/" | "=" "=" | "<" | "<" "=" | ">" | ">" "=" | "!" "="

string_operator ::= "=" "=" | "!" "="

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 72 of 83

real_ ternary_conditional_operation ::=
"(" <boolean_expression> ")" "?" <real_expression> ":" <real_expression> |
<boolean_expression> "?" <real_expression> ":" <real_expression>

boolean_ternary_conditional_operation::=
"(" <boolean_expression> ")" "?" <boolean_expression> ":" <boolean_expression> |
<boolean_expression> "?" <boolean_expression> ":" <boolean_expression>

string_ternary_conditional_operation::=
"(" <boolean_expression> ")" "?" <string_expression> ":" <string_expression> |
 <boolean_expression> "?" <string_expression> ":" <string_expression>

A7.3.3 Functions

function ::= <function_name> "(" [<function_parameter_list>] ")"

function_name ::= <name>

parameter ::= <real_number> | <boolean_value> | <string> | <vector> | <expression>

function_parameter_list ::= <parameter> {"," <parameter>}

function_definition ::= <function_name> "(" [<parameter_name_list>] ")" "=" \n
"{" \n
[{<function_line> \n}]
return <expression> \n
"}" \n

function_line ::= <function_conditional> | <variable_assignment>

parameter_name_list ::= <parameter_name> { "," <parameter_name>}

real_function_definition ::= <real_function_name> "(" [<parameter_name_list>] ")" "=" \n
"{" \n
[{<function_line> \n}]
return <real_expression> \n
"}" \n

real_function_name ::= <name>

real_function_call ::= <real_function_name> "(" [<function_parameter_list>] ")"

boolean_function_definition ::= <boolean_function_name> "(" [< function_parameter_name_list>] ")"
"=" \n
"{" \n
[{<function_line> \n}]

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 73 of 83

return <boolean_expression> \n
"}" \n

boolean_function_name ::= <name>

boolean_function_call ::= <boolean_function_name> "(" [<function_parameter_list>] ")"

string_function_definition ::= <string_function_name> "(" [<parameter_name_list>] ")" "=" \n
"{" \n
[{<function_line> \n}]
return <string_expression> \n
"}" \n

string_function_name ::= <name>

string_function_call ::= <string_function_name> "(" [<function_parameter_list>] ")"

function_conditional ::= if "(" <boolean_expression> ")" \n
"{" \n
{<function_line> \n}
"}" \n
[else \n
"{" \n
{<function_line> \n }
"}" \n]

A7.3.3.1 Defined functions

natural_logarithm_function ::= ln "(" <x> ")"

log10_function ::= log10 "(" <x> ")"

exponential_function ::= exp "(" x ")"

limiting_exponential_function ::= explim "(" <x> "," <y> ")"

power_function ::= pow "(" <x> "," <y> ")"

sine_function ::= sin "(" <x> ")"

cosine_function ::= cos "(" <x> ")"

tangent_function ::= tan "(" <x> ")" returns

inverse_sine_function ::= asin "(" <x> ")"

inverse_cosine_function ::= acos "(" <x>

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 74 of 83

inverse_tangent_function ::= atan "(" <x> ")"

atan2_function ::= atan2 "(" <x> "," <y> ")"

hyperbolic_sine_function ::= sinh "(" <x> ")"

hyperbolic_cosine_function ::= cosh "(" <x> ")"

hyperbolic_tangent_function ::= tanh "(" <x> ")"

inverse_hyperbolic_sine_function ::= asinh "(" <x> ")"

inverse_hyperbolic_cosine_function ::=acosh "(" <x> ")"

inverse_hyperbolic_tangent_function ::= atanh "(" <x> ")"

absolute_value_function ::= abs "(" <x> ")"

square_root_function ::= sqrt "(" <x> ")"

db_function ::= dB "(" <x> ")"

integer_value_function ::= int "(" <x> ")"

floor_function ::= floor "(" <x> ")"

ceiling_function ::= ceiling "(" <x> ")"

nearest_integer_function ::= nint "(" <x> ")"

sign_function ::= sign"(" <x> ")"

minimum_function ::= min "(" <x> "," <y> ")"

maximum_function ::= max "(" <x> "," <y> ")"

x::= <real_expression>

y::= <real_expression>

real_predefined_function ::= natural_logarithm_function | log10_function | exponential_function |
limiting_exponential_function | power_function | sine_function | cosine_function | tangent_function |
inverse_sine_function | inverse_cosine_function | inverse_tangent_function | atan2_function |
hyperbolic_sine_function | hyperbolic_cosine_function | hyperbolic_tangent_function |
inverse_hyperbolic_sine_function | inverse_hyperbolic_cosine_function |
inverse_hyperbolic_tangent_function | square_root_function | db_function |

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 75 of 83

integer_value_function | floor_function | ceiling_function | nearest_integer_function | sign_function |
minimum_function | maximum_function | absolute_value_function | range_check

uppercase_function ::= upper "(" <s> ")"

lowercase_function ::= lower "(" <s> ")"

concatenate_function ::= concat "(" <s> "," <t> ")"

s::= <string_expression>

t::= <string_expression>

A7.3.3.2 Statistical functions

statistical_functions ::= rdist_uniform | rdist_normal | rdist_lognormal | rdist_exponential | rdist_poisson |
rdist_chi_square | rdist_t | rdist_erlang | arandom | rselect

rdist_uniform ::= rdist_uniform "(" [<seed>] "," <start> "," <end_real> ["," <type>] ")"

seed ::= <integer_number>

start_real ::= <real_expression>

end_real ::= <real_expression>

type ::= global | instance

rdist_normal ::= rdist_normal "(" [<seed>] "," <mean> "," <standard_deviation> ["," <type> [","
<truncate>]] ")"

mean ::= <real_expression>

standard_deviation ::= <real_expression>

truncate ::= <real_number>

rdist_lognormal ::= rdist_lognormal "(" [<seed>] "," <mean> "," <standard_deviation> ["," <type>]
")"

rdist_exponential ::= rdist_exponential "(" [<seed>] "," <mean> ["," <type>] ")"

rdist_poisson ::= rdist_poisson "(" [<seed>] "," <mean> ["," <type>] ")"

rdist_chi_square ::= rdist_chi_square "(" [<seed>] "," <degrees_of_freedom> ["," <type>] ")"

degrees_of_freedom ::= <real_expression>

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 76 of 83

rdist_t ::= rdist_t "(" [<seed>] "," <degrees_of_freedom> ["," <type>] ")"

rdist_erlang ::= rdist_erlang "(" [<seed>] "," <k_stage> "," <mean> ["," <type>] ")"

k_stage ::= <real_expression>

arandom ::= arandom "(" [<seed>] ["," <type>] ")"

rselect ::= rselect "(" [<seed>] "," <var1> "," <var2> ["," <type>] ")"

var1 ::= <expression>

var2 ::= <expression>

A7.3.4 Expressions

expression ::= <real_expression> | <string_expression> | <boolean_value>

real_operation ::= [<unary_operator>] <real_expression> [<binary_operator> <real_expression>] | "("
[<unary_operator>] <real_expression> [<binary_operator> <real_expression>] ")"

string_operation ::= <string_expression> [<string_operator> <string_expression>] | "("
<string_expression> [<string_operator> <string_expression>] ")"

string_comparison ::= <string_expression> "=" "=" <string_expression> | <string_expression> "!" "="
<string_expression>

real_expression ::= <real_number> | <real_operation> | <real_function> | <real_variable> |
<real_parameter> | <string_comparison> | <real_ternary_conditional_operation>

boolean_expression ::= <real_expression> | <boolean_value> | <boolean_ternary_conditional_operation>

string_expression ::= <string> | <string_operation> | <string_function> | <string_variable> |
<string_parameter> | <string_ternary_conditional_operation>

real_function ::= <real_predefined_function> | <real_function_call> | <statistical_function>

string_function ::= <string_predefined_function> | <string_function_call>

boolean_function ::= <boolean_predefined_function> | <boolean_function_call>

A7.3.5 Variables

variable_assignment ::= <single_variable_assignment> { <delimiter> <single_variable_assignment> }

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 77 of 83

single_variable_assignment ::= <real_variable_assignment> | <boolean_variable_assignment> |
<string_variable_assignment> | <vector_variable_assignment>

real_variable_assignment := <real_variable> "=" <real_expression>

real_variable := <name>

boolean_variable_assignment := <boolean_variable> "=" <boolean_expression>

boolean_variable := <name>

string_variable_assignment := <string_variable> "=" <string_expression>

string_variable := <name>

vector_variable_assignment := <vector_variable> "=" <vector>

vector_variable := <name>

redefine_variable ::= redefine_real_variable | redefine_boolean_variable | redefine_string_variable |
redefine_vector_variable

redefine_real_variable ::= redefine <real_variable> "=" <real_expression>

redefine_boolean_variable ::= redefine <boolean_variable> "=" <boolean_expression>

redefine_string_variable ::= redefine <string_variable> "=" <string_expression>

redefine_vector_variable ::= redefine <vector_variable> "=" <vector_expression>

A7.3.6 Parameters

parameter_list ::= <single_parameter_assignment> { <delimiter> <single_parameter_assignment> }
single_parameter_assignment ::= <real_parameter_assignment> | <boolean_parameter_assignment> |
<string_parameter_assignment> | <vector_parameter_assignment>

real_parameter_assignment := <real_parameter> ["=" <real_expression>]

real_parameter := <name>

boolean_parameter_assignment := <boolean_parameter> ["=" <boolean_expression>]

boolean_parameter := <name>

string_parameter_assignment := <string_parameter> ["=" <string_expression>]

string_parameter := <name>

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 78 of 83

vector_parameter_assignment := <vector_parameter> ["=" <vector>]

vector_parameter := <name>

parameter = <real_parameter> | <boolean_parameter> | <string_parameter> | <vector_parameter>

instance_parameter_call ::= E "(" <parametername> ")"

rename_function::= rename "(" <instance_parameter_call> | <parameter_name> "," <parameter_name>
")"

A7.3.7 Terminals

terminal_assignment ::= "." <name_of_terminal_in_model> "(" <terminal_name> ")"

name_of_terminal_in_model ::= <name>

terminal_name ::= <name> | "?"UNCONNECTED

terminal_list ::= [<terminal_name>]{ <delimiter> <terminal_name> } | "("
[<terminal_name>]{ <delimiter> <terminal_name> } ")" | [<terminal_assignment>]{ <delimiter>
<terminal_assignment> } | "(" [<terminal_assignment>]{ <delimiter> <terminal_assignment> } ")"

terminal ::= <terminal_assignment> | <terminal_name>

bus_terminal ::= <terminal_name> "[" <start_integer> ":" <stop_integer> "]"

start_integer ::= <integer_number>

stop_integer ::= <integer_number>

bus_terminal_reference ::= <terminal_name> "[" <start_integer> [":" <stop_integer>] "]"

busterminal_assignment ::= "." <name_of_terminal_in_model> "(" <list_of_terminals> ")"

list_of_terminals ::= <terminals> { <delimiter> <terminals> }

terminals ::= <terminal> | <bus_terminal>

global ::= global <terminal_name> {<terminal_name>}

set_ground ::= set_ground <terminal_name> {<terminal_name>}

terminal_reference ::= [<subckt_name> "."] <terminal_name>

A7.4 Netlist operations

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 79 of 83

A7.4.1 Importing

load_veriloga ::= import """veriloga""" "," """<file_name>"""

load_compiled_veriloga ::= import """compiled_veriloga""" "," """<file_name>"""

load_tmi2 ::= import """TMI2""" "," """<path>"""

path ::= <string>

A7.4.2 C-Preprocessor commands

preprocessor_define ::= #define <token1> ["(" <parameter_name> { "," <parameter_name>} ")"]
[<token2>]

parameter_name ::= <token>

token1 ::= <identifier_token>

token2 ::= <token>

token::= <text_of_string>

identifier_token::= <identifier_token_character>{<identifier_token_character>}

identifier_token_character ::= <printable_ASCII_character> except <delimiter>

preprocessor_undefine ::= #undef <token1>

preprocessor_ifdef::= #ifdef <token1> \n
{ <statement> }
[#else { <statement> } \n]
 #endif \n

preprocessor_ifndef::= #ifndef <token1> \n
{ <statement> }
[#else { <statement> } \n]
#endif \n

preprocessor_include ::= #include """ <file_name> """

preprocessor_if ::= #if <boolean_expression> \n
{ <statement> }
{#elif <boolean_expression> \n
{ <statement> }
 [#else \n

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 80 of 83

{ <statement> }]
#endif \n

A7.4.3 Interface with other languages

set_simulatorlanguage ::= simulatorlanguage "=" <language_name>

language_name ::= cmc_standard | VerilogA | <string>

A7.4.4 Interface with output

warning ::= warning "(" <warning_message> [{"," <argument>}] ")"

warning_message ::= <string>

argument ::= <expression>

range_check ::= range_check "(" <input> "," <lower_bound> "," <upper_bound> ","
<warning_message> ")"

input ::= <real_expression>

lower_bound ::= <real_expression>

upper_bound ::= <real_expression>

error ::= error "(" <warning_message> [{"," <argument>}] ")"

fatal ::= fatal "(" <warning_message> [{"," <argument>}] ")"

A7.4.5 Interface with encryption

encryption ::= encrypted \n
{ <line> }
endencrypted \n

line::= { <any_character> }

any_character ::= ASCII : 0x00-0xFF

A7.5 Circuit components

A7.5.1 Instances

instance ::= <instance_name> <terminal_list> <instance_type> [<parameter_list>]

instance_name ::= <name>

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 81 of 83

instance_type := <model_name> | <subcircuit_name> | <string_parameter>

bus_instance ::= <instance_name> "[" <start_integer> ":" <stop_integer> "]" <terminal_list>
<instance_type> [<parameter_list>]

bus_instance_reference ::= <instance_name> "[" <start_integer> [":" <stop_integer>] "]"

instance_reference ::= [<subckt_name> "."] <instance_name>

mfactor ::= mfactor "=" <real_expression>

A7.5.2 Models

model ::= model <model_name> <device_type> [<parameter_list>]

model_name ::= <name>

device_type ::= <model_name> | <model_primitive> | <string_parameter>

model_primitive ::= psp | hisim | bsim3 | bsim4 | bsimsoi | hisim_hv | hicuml0 | hicuml2 | mextram504 |
vbic | sgp | resistor | capacitor | inductor | mutual_inductor | diode_cmc | juncap2 | r2_cmc | r3_cmc |
mosvar_cmc | vsource | isource | vcvs | vccs | ccvs | cccs | <string>

binned_model ::= model <model_name> <device_type> \n
"{" \n
<binning_label> ":" [<parameter_list>] \n
{ <binning_label> ":" [<parameter_list>] \n }
"}" \n

binning_label ::= <string>

binned_model_2 ::= model <model_name> <device_type> \n
"{" \n
<binning_label> ":" <binning_condition> {<binning_condition>} [<parameter_list>] \n
{ <binning_label> ":"<binning_condition> {<binning_condition>} [<parameter_list>] \n }
"}" \n

binning_condition ::= <parameter_name> from <enclosure_start> <real_expression> ":"
<real_expression> <enclosure_end>

enclosure_start ::= "[" | "("

enclosure_end ::= "]" | ")"

A7.5.3 Subcircuits

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 82 of 83

subcircuit ::= subckt <subckt_name> < subcircuit_terminal_list> \n
{parameters <parameter_list> \n }
{ <statement> }
end <subckt_name> \n

subckt_name ::= <name>

subcircuit_terminal_list ::= [<subcircuit_terminal_name>]
{ <delimiter> <subcircuit_terminal_name> }
 | "(" [<subcircuit_terminal_name>]{ <delimiter>
<subcircuit_terminal_name> } ")"

optional_terminal ::= <terminal_name> "(" <terminal_default> ")"

subcircuit_terminal_name ::= <terminal_name> | <optional_terminal>

terminal_default ::= <previously_defined_terminal_name> | "0" | <global> | "?"UNCONNECTED

previously_defined_terminal_name ::= <terminal_name>

alias ::= alias <alias_name> "=" <name>

alias_name ::= <name>

A7.5.4 Libraries

section ::= section <section_name> \n
{ <statement> }
endsection <section_name> \n

section_name ::= <name>

include_library ::= #include """ <library_filename> """ section "=" <section_name> \n

library_filename ::= <file_name>

A7.5.5 Technologies

technology ::= technology <name_of_technology> \n
 [<content_of_technology>]
endtechnology <name_of_technology> \n

name_of_technology ::= <name>

content_of_technology ::= {<statement>}

A7.5.6 Paramsets

© Silicon Integration Initiative 2012 Standard Model Format Requirements Release 0.0.0 Page 83 of 83

paramset ::= paramset <name_of_paramset> < paramset_type_or_paramset> \n
"{" \n
{<parameter_list> \n}
"}" \n

name_of_paramset ::= <name>

paramset_type_or_paramset ::= paramset | <paramset>

A7.5.7 Conditional instantiation

conditional_instantiation ::= if "(" <boolean_expression> ")" \n
"{" \n
{ <statement> }
"}" \n
[else \n
"{"
 { <statement> }
"}" \n]

A7.5.8 Environment Parameters

environment_parameter ::= <environment_parameter_name> "=" <expression>

environment_parameter_name ::= scale | temperature | global_seed | truncate

simulator_options ::= simulator_options "." <option_name> \n

<option_name> ::= <string>

